17,031 research outputs found

    Factorial graphical lasso for dynamic networks

    Full text link
    Dynamic networks models describe a growing number of important scientific processes, from cell biology and epidemiology to sociology and finance. There are many aspects of dynamical networks that require statistical considerations. In this paper we focus on determining network structure. Estimating dynamic networks is a difficult task since the number of components involved in the system is very large. As a result, the number of parameters to be estimated is bigger than the number of observations. However, a characteristic of many networks is that they are sparse. For example, the molecular structure of genes make interactions with other components a highly-structured and therefore sparse process. Penalized Gaussian graphical models have been used to estimate sparse networks. However, the literature has focussed on static networks, which lack specific temporal constraints. We propose a structured Gaussian dynamical graphical model, where structures can consist of specific time dynamics, known presence or absence of links and block equality constraints on the parameters. Thus, the number of parameters to be estimated is reduced and accuracy of the estimates, including the identification of the network, can be tuned up. Here, we show that the constrained optimization problem can be solved by taking advantage of an efficient solver, logdetPPA, developed in convex optimization. Moreover, model selection methods for checking the sensitivity of the inferred networks are described. Finally, synthetic and real data illustrate the proposed methodologies.Comment: 30 pp, 5 figure

    Design of fibre reinforced PV concepts for building integrated applications

    Get PDF
    Fibre reinforced polymers present an interesting encapsulation medium for PV-modules. Glass fibres can provide increased strength and stiffness to thin polymer layers overcoming the brittleness and limited deformability of glass-panes. Glass fibre reinforced polymers allows for transparency over a broad range of the solar spectrum while the material properties and integral production processes create possibilities for novel product concepts with embedded PV technology. To explore such possibilities, innovative design methods were used to design novel PV product concepts for applications in the build environment.\ud In our paper three conceptual designs are presented; (1) a thin film module with an adjoining interconnection system functioning as structural element for geodetic roofing structures, (2) a PV lamella with single-axis tracking utilizing a linear concentration effect caused by the geometry of the product and the materials applied, and (3) a prepreg PV-material which allows for easy shaping during the production of PV modules with complex geometries. Each concept employs a specific PV technology and demonstrates a possible application aimed at a specific market. In this way we show the potential of integration of PV technology in fibre reinforced composites. The paper will be illustrated by concept renderings

    Pseudo-Duality

    Full text link
    Proper symmetries act on fields while pseudo-symmetries act on both fields and coupling constants. We identify the pseudo-duality groups that act as symmetries of the equations of motion of general systems of scalar and vector fields and apply our results to N=2,4N=2,4 and 88 supergravity theories. We present evidence that the pseudo-duality group for both the heterotic and type II strings toroidally compactified to four dimensions is Sp(56;Z)×DSp(56;\Z)\times D, where DD is a certain subgroup of the diffeomorphism group of the scalar field target space. This contains the conjectured heterotic S×TS\times T or type II UU proper duality group as a subgroup.Comment: 13 pages, phyzzx macr

    On Some Stability Properties of Compactified D=11 Supermembranes

    Get PDF
    We desribe the minimal configurations of the bosonic membrane potential, when the membrane wraps up in an irreducible way over S1×S1S^{1}\times S^{1}. The membrane 2-dimensional spatial world volume is taken as a Riemann Surface of genus gg with an arbitrary metric over it. All the minimal solutions are obtained and described in terms of 1-forms over an associated U(1) fiber bundle, extending previous results. It is shown that there are no infinite dimensional valleys at the minima.Comment: 12 pages,Latex2e lamuphys, Invited talk at International Seminar "Supersymetry and Quantum Symmetries", Dubn

    On The spectrum of a Noncommutative Formulation of the D=11 Supermembrane with Winding

    Get PDF
    A regularized model of the double compactified D=11 supermembrane with nontrivial winding in terms of SU(N) valued maps is obtained. The condition of nontrivial winding is described in terms of a nontrivial line bundle introduced in the formulation of the compactified supermembrane. The multivalued geometrical objects of the model related to the nontrivial wrapping are described in terms of a SU(N) geometrical object which in the N→∞ N\to \infty limit, converges to the symplectic connection related to the area preserving diffeomorphisms of the recently obtained non-commutative description of the compactified D=11 supermembrane.(I. Martin, J.Ovalle, A. Restuccia. 2000,2001) The SU(N) regularized canonical lagrangian is explicitly obtained. In the N→∞ N\to \infty limit it converges to the lagrangian in (I.Martin, J.Ovalle, A.Restuccia. 2000,2001) subject to the nontrivial winding condition. The spectrum of the hamiltonian of the double compactified D=11 supermembrane is discussed. Generically, it contains local string like spikes with zero energy. However the sector of the theory corresponding to a principle bundle characterized by the winding number n≠0n \neq 0, described by the SU(N) model we propose, is shown to have no local string-like spikes and hence the spectrum of this sector should be discrete.Comment: 16 pages.Latex2

    Intrinsic Moment of Inertia of Membranes as bounds for the mass gap of Yang-Mills Theories

    Full text link
    We obtain the precise condition on the potentials of Yang-Mills theories in 0+1 dimensions and D0 brane quantum mechanics ensuring the discretness of the spectrum. It is given in terms of a moment of inertia of the membrane. From it we obtain a bound for the mass gap of any D+1 Yang-Mills theory in the slow-mode regime. In particular we analyze the physical case D=3. The quantum mechanical behavior of the theories, concerning its spectrum, is determined by harmonic oscillators with frequencies given by the inertial tensor of the membrane. We find a class of quantum mechanic potential polynomials of any degree, with classical instabilities that at quantum level have purely discrete spectrum.Comment: 12pages, Latex, minor changes, more explanatory comment
    • …
    corecore