6,242 research outputs found
Investigation of new concepts of adaptive devices Quarterly technical report, 3 Mar. - 2 Jun. 1969
Charge decay processes in memory device and in new metal nitride semiconductor light-sensitive memory elemen
Investigation of new concepts of adaptive devices Quarterly technical report, 3 Dec. 1968 - 2 Mar. 1969
Conduction mechanisms and transient behavior of memory device using semiconductor device
Investigation of new concepts of adaptive devices Quarterly technical report, 15 Jun. - 14 Sep. 1967
Insulated gate field effect transistor with adaptive and memory characteristic
Self-consistent calculation of metamaterials with gain
We present a computational scheme allowing for a self-consistent treatment of
a dispersive metallic photonic metamaterial coupled to a gain material
incorporated into the nanostructure. The gain is described by a generic
four-level system. A critical pumping rate exists for compensating the loss of
the metamaterial. Nonlinearities arise due to gain depletion beyond a certain
critical strength of a test field. Transmission, reflection, and absorption
data as well as the retrieved effective parameters are presented for a lattice
of resonant square cylinders embedded in layers of gain material and split ring
resonators with gain material embedded into the gaps.Comment: 5 pages, 6 figure
Investigation of new concepts of adaptive devices Quarterly technical report, 15 Sep. - 14 Dec. 1968
Heat and light effects on charge storage of silicon nitride memory capacitor following high temperature exposure in hydrogen and ammoni
Carrier-envelope phase dependence in single-cycle laser pulse propagation with the inclusion of counter-rotating terms
We focus on the propagation properties of a single-cycle laser pulse through
a two-level medium by numerically solving the full-wave Maxwell-Bloch
equations. The counter-rotating terms in the spontaneous emission damping are
included such that the equations of motion are slightly different from the
conventional Bloch equations. The counter-rotating terms can considerably
suppress the broadening of the pulse envelope and the decrease of the group
velocity rooted from dispersion. Furthermore, for incident single-cycle pulses
with envelope area 4, the time-delay of the generated soliton pulse from
the main pulse depends crucially on the carrier-envelope phase of the incident
pulse. This can be utilized to determine the carrier-envelope phase of the
single-cycle laser pulse.Comment: 6 pages, 5 figure
An investigation of the effects of radiation on silicon nitride insulated gate /MNS/ transistors Final report
Radiation effects on silicon nitride insulated gate field effect transistor
Single-cycle gap soliton in a subwavelength structure
We demonstrate that a single sub-cycle optical pulse can be generated when a
pulse with a few optical cycles penetrates through resonant two-level dense
media with a subwavelength structure. The single-cycle gap soliton phenomenon
in the full Maxwell-Bloch equations without the frame of slowly varying
envelope and rotating wave approximations is observed. Our study shows that the
subwavelength structure can be used to suppress the frequency shift caused by
intrapulse four-wave mixing in continuous media and supports the formation of
single-cycle gap solitons even in the case when the structure period breaks the
Bragg condition. This suggests a way toward shortening high-intensity laser
fields to few- and even single-cycle pulse durations.Comment: 4 pages, 6 figure
Numerical Investigation of Light Scattering off Split-Ring Resonators
Recently, split ring-resonators (SRR's) have been realized experimentally in
the near infrared (NIR) and optical regime. In this contribution we numerically
investigate light propagation through an array of metallic SRR's in the NIR and
optical regime and compare our results to experimental results.
We find numerical solutions to the time-harmonic Maxwell's equations by using
advanced finite-element-methods (FEM). The geometry of the problem is
discretized with unstructured tetrahedral meshes. Higher order, vectorial
elements (edge elements) are used as ansatz functions. Transparent boundary
conditions and periodic boundary conditions are implemented, which allow to
treat light scattering problems off periodic structures.
This simulation tool enables us to obtain transmission and reflection spectra
of plane waves which are incident onto the SRR array under arbitrary angles of
incidence, with arbitrary polarization, and with arbitrary
wavelength-dependencies of the permittivity tensor. We compare the computed
spectra to experimental results and investigate resonances of the system.Comment: 9 pages, 8 figures (see original publication for images with a better
resolution
- …
