8 research outputs found

    Epidermal growth factor mediates spermatogonial proliferation in newt testis

    Get PDF
    The complex processes of spermatogenesis are regulated by various factors. The aim of the current study is to determine the effect of epidermal growth factor (EGF) on spermatogonial proliferation and clarify the mechanism causing the proliferation in newt testis. In the organ culture, EGF stimulated spermatogonial proliferation, but not their differentiation into spermatocytes. cDNA cloning identified 3 members of the EGF receptors, ErbB1, ErbB2, and ErbB4, in the testis. RT-PCR showed that all the receptors cloned were expressed in both Sertoli and germ cells at the spermatogonial stage. In the organ cultures with inhibitors for the EGF receptors, mitogen-activated protein kinase (MAPK), and phosphoinositide 3-kinase (PI3K), the EGF-induced spermatogonial proliferation was suppressed. Furthermore, when the organ culture was exposed to EGF, the expressions of stem cell factor (SCF), immunoglobulin-like domain containing neuregulin1 (Ig-NRG1), and ErbB4 mRNA were increased. These results suggested that, since the spermatogonia are sequestered within cysts by the blood-testis barrier consisted of Sertoli cells, EGF possibly mediates spermatogonial proliferation in an endocrine manner through the receptors including ErbB1, ErbB2, and ErbB4 expressed on Sertoli cells via activation of MAPK cascade or/and PI3K cascade by elevating the expressions of SCF, Ig-NRG1, and ErbB4

    The biology of interleukin-1: Emerging concepts in the regulation of the actin cytoskeleton and cell junction dynamics

    No full text
    Interleukin (IL)-1 is a proinflammatory cytokine with important roles in innate immunity, as well as in normal tissue homeostasis. Interestingly, recent studies have also shown IL-1 to function in the dynamics of the actin cytoskeleton and cell junctions. For example, treatment of different epithelia with IL-1α often results in the restructuring of the actin network and cell junctions, thereby leading to junction disassembly. In this review, we highlight new and interesting findings that show IL-1 to be a critical player of restructuring events in the seminiferous epithelium of the testis during spermatogenesis

    Regulation of actin dynamics and protein trafficking during spermatogenesis – Insights into a complex process

    No full text

    In vitro

    No full text

    The ERBB3 receptor in cancer and cancer gene therapy

    No full text
    corecore