56 research outputs found

    Autonomous Field-Deployable Wildland Fire Sensors

    Get PDF
    An Autonomous Fire Detector (AFD) is a miniature electronic package combining position location capability [using the Global Positioning System (GPS)], communications (packet or voice-synthesized radio), and fire detection capability (thermal, gas, smoke detector) into an inexpensive, deployable package. The AFD can report fire-related parameters, like temperature, carbon monoxide concentration, or smoke levels via a radio link to firefighters located on the ground. These systems are designed to be inserted into the fire by spotter planes at a fire site or positioned by firefighters already on the ground. AFDs can also be used as early warning devices near critical assets in the urban–wildland interface. AFDs can now be made with commercial off-the-shelf components. Using modern micro-electronics, an AFD can operate for the duration of even the longest fire (weeks) using a simple dry battery pack, and can be designed to have a transmitting range of up to several kilometers with current low power radio communication technology. A receiver to capture the data stream from the AFD can be made as light, inexpensive and portable as the AFD itself. Inexpensive portable repeaters can be used to extend the range of the AFD and to coordinate many probes into an autonomous fire monitoring network

    Adaptive optical sensing in an object tracking DDDAS

    No full text
    The generalized optical remote sensing tracking problem for an object moving in a dynamic urban environment is complex. Two emerging capabilities that can help solve this problem are adaptive multimodal sensing and modeling with data assimilation. Adaptive multimodal sensing describes sensor hardware systems that can be rapidly reconfigured to collect the appropriate data as needed. Imaging of a moving target implies some ability to forecast where to image next so as to keep the object in the scene. Forecasts require models and to help solve this prediction problem, data assimilation techniques can be applied to update executing models with sensor data and thereby dynamically minimize forecast errors. The direct combination of these two capabilities is powerful but does not answer the questions of how or when to change the imaging modality. The Dynamic Data-Driven Applications Systems (DDDAS) paradigm is well-suited for solving this problem, where sensing must be adaptive to a complex changing environment and where the prediction of object movement and its interaction with the environment will enhance the ability of the sensing system to stay focused on the object of interest. Here we described our work on the creation of a modeling system for optical tracking in complex environments, with a focus on integrating an adaptive imaging sensor within the system framework

    Building capacity in remote sensing for conservation: present and future challenges

    No full text
    Remote sensing (RS) has made significant contributions to conservation and ecology; however, direct use of RS-based information for conservation decision making is currently very limited. In this paper, we discuss the reasons and challenges associated with using RS technology by conservationists and suggest how training in RS for conservationists can be improved. We present the results from a survey organized by the Conservation Remote Sensing Network to understand the RS expertise and training needs of various categories of professionals involved in conservation research and implementation. The results of the survey highlight the main gaps and priorities in the current RS data and technology among conservation practitioners from academia, institutions, NGOs and industry. We suggest training to be focused around conservation questions that can be addressed using RS-derived information rather than training pure RS methods which are beyond the interest of conservation practitioners. We highlight the importance of developing essential biodiversity variables (EBVs) and how this can be achieved by increasing the RS capacity of the conservation community. Moreover, we suggest that open-source software is adopted more widely in the training modules to facilitate access to RS data and products in developing countries, and that online platforms providing mapping tools should also be more widely distributed. We believe that improved RS capacity among conservation scientists will be essential to improve conservation efforts on the ground and will make the conservation community a key player in the definition of future RS-based products that serve conservation and ecological needs
    • …
    corecore