31 research outputs found

    Compost stream as a potential biomass for humic acid production: Focus on compost seasonal and geographical variability

    Get PDF
    Compost is a voluminous stream rich in humic and fulvic acids, which may be recovered as high-added value compounds. These soluble bio-based lignin-like polymeric substances (SBO) can be extracted through a completely green process developed at pilot scale, whose main core is the hydrolytic route in aqueous solutions at relatively mild temperature (< 140 °C) at ACEA Pinerolese Industriale premises. Due to their chemical-physical properties, the SBO compounds can be used with advantage for myriads of industrial applications, from the formulation of detergents to the production of agriculture biostimulants, answering the increasing demand for bio-compound utilization. In view of LIFECAB project (LIFE16 ENV/IT/000179), the characterization of starting materials and the derived compost has been performed over four seasons and over three European countries (Italy, Greece ad Cyprus). In view of establishing a relationship between SBO molecules and compost properties, this work is a challenging opportunity for assessing the compost variability and its temporal evolution during the composting process. Analyses of pH, salinity, total carbon, total nitrogen and C/N ratio, critically assessed by means of a statistical approach, provide important information about compost composition according to the season and to the local environmental conditions

    Model the Role of Chemokines (CCL21) and Angiopoietins (Ang-1 and Ang-2) in Lymfangiogenesis with the Method Cellular Potts Model

    No full text
    63 σ.Ο καρκίνος αποτελεί τη δεύτερη σε συχνότητα αιτία θανάτου στις Η.Π.Α. και στην Ευρώπη. Παρ'ότι εκατομμύρια ανθρώπων προσβάλλονται παγκοσμίως από την ασθένεια αυτή, αρκετοί από τους μηχανισμούς οι οποίοι συντελούν στην ανάπτυξη της ασθένειας δεν έχουν γίνει ακόμα γνωστοί. Μια πολύ σημαντική παράμετρος, που δυσκολεύει την αντιμετώπιση του καρκίνου είναι η ικανότητά του να δημιουργεί μεταστάσεις. Για να πραγματοποιηθεί η μετάσταση θα πρέπει να ενεργοποιηθούν οι μηχανισμοί της αγγειογένεσης ή της λεμφαγγειογένεσης. Στην παρούσα διπλωματική εργασία μελετώνται συγκεκριμένοι μηχανισμοί που συντελούν στη δημιουργία της λεμφαγγειογένεσης. Ειδικότερα, μελετούνται δύο είδη πρωτεϊνών, οι χημειοκίνες (Chemokines) και οι αγγειοποιητίνες (Angiopoietins). Από την οικογένεια των χημειοκινών μελετάται η CCL21 και από την οικογένεια των αγγειοποιητίνων μελετούνται η αγγειοποιητίνη-1 (Angiopoietin-1 (Ang-1)) και η αγγειοποιητίνη-2 (Angiopoietin-2 (Ang-2)). Αρχικά παρουσιάζεται η χημική κινητική των προαναφερθέντων χημειοκινών και αγγειοποιητίνων. Παράλληλα, αναπτύχθηκαν πρωτότυπα στοχαστικά χωροχρονικά μοντέλα με τη μέθοδο Cellular Potts Model (CPM) με τη χρήση του προγράμματος CompuCell 3D. Ως αποτέλεσμα των ανωτέρω μοντέλων είναι η χρήση τους για την ανάπτυξη φαρμάκων που αναστέλουν τις συγκεκριμένες χημειοκίνες και αγγειοποιητίνες στην λεμφαγγειογένεσηCancer is the second most deadly illness all around the world. We use word "cancer" to describe the wrong growth of the cells. Although, millions of people are sickening because of cancer, there are many cancer's mechanisms, which is unknown by the scientific community. One critical property of cancer is the tumor metastasis, which makes more dificult the creation of a cure for cancer. Angiogenesis and lymphangiogenesis are the only ways for cancer to create its metastasis. This work focuses on the mechanisms which lead to the lymphangiognesis. The first one is related with chemokines and especially the CCL21 (a chemokine of C-C family of chemokines). The other mechanism is based on angiopoietins, and the role of the first (Angiopoietin-1, Ang-1) and the second (Angiopoietin-2, Ang-2) angiopoietin. Firstly, in this work we search the stability of these proteins using ordinary differential equations. Also, we develop novel stochastic mondels through the Cellular Potts Model (CPM) on the CompuCell 3D program. The results are going to be used for the development of drugs, which can block those chemokines and angiopoietins.Μιχαήλ Α. Βλυσίδη

    Sustainability of food waste biorefinery: A review on valorisation pathways, techno-economic constraints, and environmental assessment

    No full text
    The need to increase circularity of industrial systems to address limited resources availability and climate change has triggered the development of the food waste biorefinery concept. However, for the development of future sustainable industrial processes focused on the valorisation of food waste, critical aspects such as (i) the technical feasibility of the processes at industrial scale, (ii) the analysis of their techno-economic potential, including available quantities of waste, and (iii) a life cycle-based environmental assessment of benefits and burdens need to be considered. The goal of this review is to provide an overview of food waste valorisation pathways and to analyse to which extent these aspects have been considered in the literature. Although a plethora of food waste valorisation pathways exist, they are mainly developed at lab-scale. Further research is necessary to assess upscaled performance, feedstock security, and economic and environmental assessment of food waste valorisation processes

    Modelling succinic acid fermentation using a xylose based substrate

    No full text
    This study focuses on the development of unstructured models, including both substrate and product inhibition, that predict the cultivation of Actinobacillus succinogenes and Basfia succiniciproducens on a mixture of C5 and C6 sugars, similar to the sugar composition contained in spent sulphite liquor, the liquid waste stream from the sulphite pulping process. The main sugar monomer contained in the medium was xylose (72.6%) with galactose (12.2%), glucose (10.9%), mannose (4.2%) and arabinose (0.1%) making up the remaining sugar content. The growth inhibition caused by metabolic products (succinic, lactic, acetic, formic and mixed acids) and initial mixed sugar concentration was determined. The highest obtained succinic acid yield, final concentration and productivity in fermentations carried out in Duran bottles were 0.76 g/g, 26.0 g/L and 0.66 g/L/h for B. succiniciproducens and 0.69 g/g, 27.4 g/L and 0.60 g/L/h for A. succinogenes, respectively (the units in yield calculations are referred to grams of succinic acid produced per gram of total sugars consumed). The kinetic parameters for both strains were estimated from experimental results. The obtained R2 values for the fitted models were 0.96 for A. succinogenes and 0.94 for B. succiniciproducens. A sensitivity analysis on the obtained parameters showed that the maximum specific growth rates (μmax) and the growth associated substrate consumption parameters (γ) are the most influential model parameters for both microorganisms. The model was validated by fermentations conducted in lab-scale bioreactors showing good agreement between experimental data and model simulations

    Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances

    No full text
    The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies

    Actinobacillus succinogenes: Advances on succinic acid production and prospects for development of integrated biorefineries

    No full text
    Actinobacillus succinogenes is a wild-type bacterial strain, isolated from bovine rumen, known as one of the most efficient natural producers of succinic acid. Herein, the factors contributing to the fermentative production of succinic acid by A. succinogenes are reviewed with particular focus on raw materials, culture conditions, significance of carbon dioxide availability and downstream separation and purification. The metabolic potential of this strain is evaluated through discussion of the pathways involved in succinic acid production, genome analysis as well as the development of A. succinogenes mutants. The review also addresses the importance of by-product formation during fermentation that constitutes an important aspect regulating succinic acid production by A. succinogenes. The prospect of integrating succinic acid production in future biorefineries is assessed

    The potential of emerging bio-based products to reduce environmental impacts

    No full text
    Abstract The current debate on the sustainability of bio-based products questions the environmental benefits of replacing fossil- by bio-resources. Here, we analyze the environmental trade-offs of 98 emerging bio-based materials compared to their fossil counterparts, reported in 130 studies. Although greenhouse gas life cycle emissions for emerging bio-based products are on average 45% lower (−52 to −37%; 95% confidence interval), we found a large variation between individual bio-based products with none of them reaching net-zero emissions. Grouped in product categories, reductions in greenhouse gas emissions ranged from 19% (−52 to 35%) for bioadhesives to 73% (−84 to −54%) for biorefinery products. In terms of other environmental impacts, we found evidence for an increase in eutrophication (369%; 163 to 737%), indicating that environmental trade-offs should not be overlooked. Our findings imply that the environmental sustainability of bio-based products should be evaluated on an individual product basis and that more radical product developments are required to reach climate-neutral targets

    Integrated chemical and biochemical technology to produce biogas with a reduced ammonia content from municipal biowaste. Validating lab-scale research in a real operational environment

    No full text
    The current paper reports the scientific, technical, environmental, economic and social impacts of two integrated chemical and biochemical processes that employed a novel virtuous biowaste cycle under real operational conditions of three industrial sites in Italy, Greece and Cyprus. The work was based on previous laboratory research pertinent to the valorisation of municipal biowastes (MBWs) as a feedstock to obtain value added soluble biobased (SBO) products. The research pointed out that the site-specific nature of MBW was the main criticality, which could potentially hinder the industrialisation of the MBW-SBO paradigm. The present work demonstrates the feasibility of a new scenario for a conventional waste treatment plan collecting and processing MBWs by anaerobic and aerobic fermentation. In essence, the virtuous biowaste cycle is realised by producing SBO from the plant MBW (process 1) and recirculating it to the MBW feed of the anaerobic fermentation reactor to reduce the ammonia content in the digestate (process 2). This mitigates the digestate's environmental impact. Life cycle sustainability assessment demonstrates that the use of SBO produced from local MBW allowed reducing the ammonia content of the digestate generated from the local anaerobic fermentation facilities in the three different countries by 21–68% as well its eutrophication potential. Process 2 allowed at least 86% OPEX cost saving compared to conventional digestate post-treatment technologies for ammonia abatement, while paying off the CAPEX cost in less than one year. Socio-economic analysis evaluated the impacts on workers and local community stakeholders, potentially stemming from the implementation of processes 1 and 2 at European level. The analysis of SBO composition and performances in each operational site investigated showed that improved performance of process 2 might be achieved by isolating the active principles in raw SBO prior to their use in process 2. Chemical and biochemical catalysis by SBO active principles in process 2 support the specific perspective
    corecore