7 research outputs found

    Verification of Logs - Revealing Faulty Processes of a Medical Laboratory

    Full text link
    Abstract. If there is a suspicion of Lyme disease, a blood sample of a patient is sent to a medical laboratory. The laboratory performs a number of dierent blood examinations testing for antibodies against the Lyme disease bacteria. The total number of dierent examinations depends on the intermediate results of the blood count. The costs of each examination is paid by the health insurance company of the patient. To control and restrict the number of performed examinations the health insurance companies provide a charges regulation document. If a health insurance company disagrees with the charges of a laboratory it is the job of the public prosecution service to validate the charges according to the regulation document. In this paper we present a case study showing a systematic approach to reveal faulty processes of a medical laboratory. First, files produced by the information system of the respective laboratory are analysed and consolidated in a database. An excerpt from this database is translated into an event log describing a sequential language of events performed by the information system. With the help of the regulation document this language can be split in two sets- the set of valid and the set of faulty words. In a next step, we build a coloured Petri net model corre-sponding to the set of valid words in a sense that only the valid words are executable in the Petri net model. In a last step we translated the coloured Petri net into a PL/SQL-program. This program can automat-ically reveal all faulty processes stored in the database.

    Service Dependencies-Aware Policy Enforcement Framework Based on Hierarchical Colored Petri Net

    No full text
    Abstract. As computer and network security threats become more sophisticated and the number of service dependencies is increasing, optimal response decision is becoming a challenging task for security administrators. They should deploy and implement proper network security policy enforcement mechanisms in order to apply the appropriate countermeasures and defense strategy. In this paper, we propose a novel modeling framework which considers the service dependencies while identifying and selecting the appropriate Policy Enforcement Points during an intrusion response process. First, we present the security implications of the service dependencies that have been developed in the literature. Second, we give an overview of Colored Petri Nets (CPN) and Hierarchical CPN (HCPN) and its application on network security. Third, we specify our Service Dependencies-aware Policy Enforcement Framework which is based on the application of HCPN. Finally and to illustrate the advantage of our approach, we present a webmail application use case with the integration of different Policy Enforcement Points.

    Using Colored Petri Nets to Construct Coalescent Hidden Markov Models: Automatic Translation from Demographic Specifications to Efficient Inference Methods

    No full text
    Abstract. Biotechnological improvements over the last decade has made it economically and technologically feasible to collect large DNA sequence data from many closely related species. This enables us to study the detailed evolutionary history of recent speciation and demographics. Sophisticated statistical methods are needed, however, to extract the information that DNA sequences hold, and a limiting factor in this is dealing with the large state space that the ancestry of large DNA sequences spans. Recently a new analysis method, CoalHMMs, has been developed, that makes it computationally feasible to scan full genome sequences – the complete genetic information of a species – and extract genetic histories from this. Applying this methodology, however, requires that the full state space of ancestral histories can be constructed. This is not feasible to do manually, but by applying formal methods such as Petri nets it is possible to build sophisticated evolutionary histories and automatically derive the analysis models needed. In this paper we describe how to use colored stochastic Petri nets to build CoalHMMs for complex demographic scenarios.

    Discovering simulation models

    No full text
    Process mining is a tool to extract non-trivial and useful information from process execution logs. These so-called event logs (also called audit trails, or transaction logs) are the starting point for various discovery and analysis techniques that help to gain insight into certain characteristics of the process. In this paper we use a combination of process mining techniques to discover multiple perspectives (namely, the control-flow, data, performance, and resource perspective) of the process from historic data, and we integrate them into a comprehensive simulation model. This simulation model is represented as a colored Petri net (CPN) and can be used to analyze the process, e.g., evaluate the performance of different alternative designs. The discovery of simulation models is explained using a running example. Moreover, the approach has been applied in two case studies; the workflows in two different municipalities in the Netherlands have been analyzed using a combination of process mining and simulation. Furthermore, the quality of the CPN models generated for the running example and the two case studies has been evaluated by comparing the original logs with the logs of the generated models.close214
    corecore