113 research outputs found

    Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K

    Full text link
    Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of the quasi-two dimensional charge transfer salt β\beta"-(ET)4_4(H3_3O)[Fe(C2_2O4_4)3_3]\cdotC6_6H4_4Cl2_2 have been investigated in pulsed magnetic fields up to 54 T. The data reveal three basic frequencies Fa_a, Fb_b and Fba_{b - a}, which can be interpreted on the basis of three compensated closed orbits at low temperature. However a very weak thermal damping of the Fourier component Fb_b, with the highest amplitude, is evidenced for SdH spectra above about 6 K. As a result, magnetoresistance oscillations are observed at temperatures higher than 30 K. This feature, which is not observed for dHvA oscillations, is in line with quantum interference, pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009

    Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers

    Full text link
    Interlayer tunneling in graphite mesa-type structures is studied at a strong in-plane magnetic field HH up to 55 T and low temperature T=1.4T=1.4 K. The tunneling spectrum dI/dVdI/dV vs. VV has a pronounced peak at a finite voltage V0V_0. The peak position V0V_0 increases linearly with HH. To explain the experiment, we develop a theoretical model of graphite in the crossed electric EE and magnetic HH fields. When the fields satisfy the resonant condition E=vHE=vH, where vv is the velocity of the two-dimensional Dirac electrons in graphene, the wave functions delocalize and give rise to the peak in the tunneling spectrum observed in the experiment.Comment: 6 pages, 6 figures; corresponds to the published version in Eur. Phys. J. Special Topics, Proceedings of the IMPACT conference 2012, http://lptms.u-psud.fr/impact2012

    Crystal structure, Fermi surface calculations and Shubnikov-de Haas oscillations spectrum of the organic metal θ\theta-(BETS)4_4HgBr4_4(C6_6H5_5Cl) at low temperature

    Full text link
    The organic metal \theta(BETS)-(BETS)_4HgBrHgBr_4(C(C_6HH_5$Cl) is known to undergo a phase transition as the temperature is lowered down to about 240 K. X-ray data obtained at 200 K indicate a corresponding modification of the crystal structure, the symmetry of which is lowered from quadratic to monoclinic. In addition, two different types of cation layers are observed in the unit cell. The Fermi surface (FS), which can be regarded as a network of compensated electron and hole orbits according to band structure calculations at room temperature, turns to a set of two alternating linear chains of orbits at low temperature. The field and temperature dependence of the Shubnikov-de Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are observed which, in any case, points to a FS much more complex than predicted by band structure calculations at room temperature, even though some of the observed Fourier components might be ascribed to magnetic breakdown or frequency mixing. The obtained spectrum could result from either an interaction between the FS's linked to each of the two cation layers or to an eventual additional phase transition in the temperature range below 200 K.Comment: accepted for publication in Solid State Science

    Multiple Quantum Oscillations in the de Haas van Alphen Spectra of the Underdoped High Temperature Superconductor YBa_2Cu_3O_6.5

    Full text link
    By improving the experimental conditions and extensive data accumulation, we have achieved very high-precision in the measurements of the de Haas-van Alphen effect in the underdoped high-temperature superconductor YBa2_{2}Cu3_{3}O6.5_{6.5}. We find that the main oscillation, so far believed to be single-frequency, is composed of three closely spaced frequencies. We attribute this to bilayer splitting and warping of a single quasi-2D Fermi surface, indicating that \emph{c}-axis coherence is restored at low temperature in underdoped cuprates. Our results do not support the existence of a larger frequency of the order of 1650 T reported recently in the same compound [S.E. Sebastian {\it et al}., Nature {\bf 454}, 200 (2008)]

    Reply to Comment by Borisenko et al. on article `A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs'

    Full text link
    Recently, Borisenko et al have posted a Comment (arXiv:1108.1159) where they suggest an alternative interpretation of our de Haas-van Alphen (dHvA) measurements on the superconductor LiFeAs. In our original paper (arXiv:1107.4375) we concluded that our measurements of the bulk Fermi surface were not consistent with the surface bands observed thus far by ARPES. Borisenko et al dispute this and suggest the two measurements are consistent if some of the orbits we observe are due to magnetic breakdown. We argue here that this scenario is inconsistent with the experimental data and therefore that our original conclusion stands.Comment: 4 pages with figure

    Field-induced nematic-like magnetic transition in an iron pnictide superconductor, Ca10_{10}(Pt3_{3}As8_{8})((Fe1x_{1-x}Ptx_{x})2_{2}As2_{2})5_{5}

    Get PDF
    We report a high magnetic field study up to 55 T of the nearly optimally doped iron-pnictide superconductor Ca10_{10}(Pt3_{3}As8_{8}) ((Fe1x_{1-x}Ptx_{x})2_{2}As2_{2})5_{5} (x=0.078(6)) with a Tc 10 K using magnetic torque, tunnel diode oscillator technique and transport measurements. We determine the superconducting phase diagram, revealing an anisotropy of the irreversibility field up to a factor of 10 near Tc and signatures of multiband superconductivity. Unexpectedly, we find a spin-flop like anomaly in magnetic torque at 22 T, when the magnetic field is applied perpendicular to the ab planes, which becomes significantly more pronounced as the temperature is lowered to 0.33 K. As our superconducting sample lies well outside the antiferromagnetic region of the phase diagram, the observed field-induced transition in torque indicates a spin-flop transition not of long-range ordered moments, but of nematic-like antiferromagnetic fluctuations.Comment: Latex, 4 figure

    Magnetic oscillations in a two-dimensional network of compensated electron and hole orbits

    Full text link
    The FS of (ET)8Hg4Cl12(C6H5Br)2 can be regarded as a 2D network of compensated electron and hole orbits coupled by magnetic breakthrough. Simultaneous measurements of the interlayer magnetoresistance and magnetic torque have been performed up to 28 T. Magnetoresistance and de dHvA oscillations spectra exhibit frequency combinations typical of such a network. Even though some of the observed magnetoresistance oscillations cannot be interpreted on the basis of neither conventional SdH oscillations nor quantum interference, the temperature and magnetic field (both orientation and magnitude) dependence of all the Fourier components of the dHvA spectra can be consistently accounted for by the LK formula. This behaviour is at variance with that currently reported for compounds illustrating the linear chain of coupled orbits model.Comment: accepted for publication in europhysics Letter

    de Haas-van Alphen oscillations in the underdoped cuprate YBa2_2Cu3_3O6.5_{6.5}

    Full text link
    The de Haas-van Alphen effect was observed in the underdoped cuprate YBa2_2Cu3_3O6.5_{6.5} via a torque technique in pulsed magnetic fields up to 59 T. Above an irreversibility field of \sim30 T, the magnetization exhibits clear quantum oscillations with a single frequency of 540 T and a cyclotron mass of 1.76 times the free electron mass, in excellent agreement with previously observed Shubnikov-de Haas oscillations. The oscillations obey the standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic observation of quantum oscillations confirms the existence of a well-defined, close and coherent, Fermi surface in the pseudogap phase of cuprates.Comment: published versio

    Evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 on entering the superconducting dome

    Get PDF
    Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces shrink linearly with decreasing x. This shrinking is accompanied by a strong increase in the quasiparticle effective mass as x is tuned toward the maximum T_c. It is likely that these trends originate from the many-body interaction which give rise to superconductivity, rather than the underlying one-electron bandstructure.Comment: 4 page

    The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal)

    Get PDF
    In the Ferlo Region in Senegal, livestock depend on temporary ponds for water but are exposed to the Rift Valley Fever (RVF), a disease transmitted to herds by mosquitoes which develop in these ponds. Mosquito abundance is related to the emptying and filling phases of the ponds, and in order to study the epidemiology of RVF, pond modelling is required. In the context of a data scarce region, a simple hydrologic model which makes use of remote sensing data was developed to simulate pond water dynamics from daily rainfall. Two sets of ponds were considered: those located in the main stream of the Ferlo Valley whose hydrological dynamics are essentially due to runoff, and the ponds located outside, which are smaller and whose filling mechanisms are mainly due to direct rainfall. Separate calibrations and validations were made for each set of ponds. Calibration was performed from daily field data (rainfall, water level) collected during the 2001 and 2002 rainy seasons and from three different sources of remote sensing data: 1) very high spatial resolution optical satellite images to access pond location and surface area at given dates, 2) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) data to estimate pond catchment area and 3) Tropical Rainfall Measuring Mission (TRMM) data for rainfall estimates. The model was applied to all ponds of the study area, the results were validated and a sensitivity analysis was performed. Water height simulations using gauge rainfall as input were compared to water level measurements from four ponds and Nash coefficients &gt;0.7 were obtained. Comparison with simulations using TRMM rainfall data gave mixed results, with poor water height simulations for the year 2001 and good estimations for the year 2002. A pond map derived from a Quickbird satellite image was used to assess model accuracy for simulating pond water areas for all the ponds of the study area. The validation showed that modelled water areas were mostly underestimated but significantly correlated, particularly for the larger ponds. The results of the sensitivity analysis showed that parameters relative to pond shape and catchment area estimation have less effects on model simulation than parameters relative to soil properties (rainfall threshold causing runoff in dry soils and the coefficient expressing soil moisture decrease with time) or the water loss coefficient. Overall, our results demonstrate the possibility of using a simple hydrologic model with remote sensing data to track pond water heights and water areas in a homogeneous arid area
    corecore