113 research outputs found
Indication for the coexistence of closed orbit and quantum interferometer with the same cross section in the organic metal (ET)4(H3O)[Fe(C2O4)3].C6H4Cl2: Persistence of SdH oscillations above 30 K
Shubnikov-de Haas (SdH) and de Haas-van Alphen (dHvA) oscillations spectra of
the quasi-two dimensional charge transfer salt
"-(ET)(HO)[Fe(CO)]CHCl have been
investigated in pulsed magnetic fields up to 54 T. The data reveal three basic
frequencies F, F and F, which can be interpreted on the basis
of three compensated closed orbits at low temperature. However a very weak
thermal damping of the Fourier component F, with the highest amplitude, is
evidenced for SdH spectra above about 6 K. As a result, magnetoresistance
oscillations are observed at temperatures higher than 30 K. This feature, which
is not observed for dHvA oscillations, is in line with quantum interference,
pointing to a Fermi surface reconstruction in this compound.Comment: published in Eur. Phys. J. B 71 203 (2009
Interlayer tunneling spectroscopy of graphite at high magnetic field oriented parallel to the layers
Interlayer tunneling in graphite mesa-type structures is studied at a strong
in-plane magnetic field up to 55 T and low temperature K. The
tunneling spectrum vs. has a pronounced peak at a finite voltage
. The peak position increases linearly with . To explain the
experiment, we develop a theoretical model of graphite in the crossed electric
and magnetic fields. When the fields satisfy the resonant condition
, where is the velocity of the two-dimensional Dirac electrons in
graphene, the wave functions delocalize and give rise to the peak in the
tunneling spectrum observed in the experiment.Comment: 6 pages, 6 figures; corresponds to the published version in Eur.
Phys. J. Special Topics, Proceedings of the IMPACT conference 2012,
http://lptms.u-psud.fr/impact2012
Crystal structure, Fermi surface calculations and Shubnikov-de Haas oscillations spectrum of the organic metal -(BETS)HgBr(CHCl) at low temperature
The organic metal \theta_4_4_6_5$Cl) is known to
undergo a phase transition as the temperature is lowered down to about 240 K.
X-ray data obtained at 200 K indicate a corresponding modification of the
crystal structure, the symmetry of which is lowered from quadratic to
monoclinic. In addition, two different types of cation layers are observed in
the unit cell. The Fermi surface (FS), which can be regarded as a network of
compensated electron and hole orbits according to band structure calculations
at room temperature, turns to a set of two alternating linear chains of orbits
at low temperature. The field and temperature dependence of the Shubnikov-de
Haas oscillations spectrum have been studied up to 54 T. Eight frequencies are
observed which, in any case, points to a FS much more complex than predicted by
band structure calculations at room temperature, even though some of the
observed Fourier components might be ascribed to magnetic breakdown or
frequency mixing. The obtained spectrum could result from either an interaction
between the FS's linked to each of the two cation layers or to an eventual
additional phase transition in the temperature range below 200 K.Comment: accepted for publication in Solid State Science
Multiple Quantum Oscillations in the de Haas van Alphen Spectra of the Underdoped High Temperature Superconductor YBa_2Cu_3O_6.5
By improving the experimental conditions and extensive data accumulation, we
have achieved very high-precision in the measurements of the de Haas-van Alphen
effect in the underdoped high-temperature superconductor
YBaCuO. We find that the main oscillation, so far believed
to be single-frequency, is composed of three closely spaced frequencies. We
attribute this to bilayer splitting and warping of a single quasi-2D Fermi
surface, indicating that \emph{c}-axis coherence is restored at low temperature
in underdoped cuprates. Our results do not support the existence of a larger
frequency of the order of 1650 T reported recently in the same compound [S.E.
Sebastian {\it et al}., Nature {\bf 454}, 200 (2008)]
Reply to Comment by Borisenko et al. on article `A de Haas-van Alphen study of the Fermi surfaces of superconducting LiFeP and LiFeAs'
Recently, Borisenko et al have posted a Comment (arXiv:1108.1159) where they
suggest an alternative interpretation of our de Haas-van Alphen (dHvA)
measurements on the superconductor LiFeAs. In our original paper
(arXiv:1107.4375) we concluded that our measurements of the bulk Fermi surface
were not consistent with the surface bands observed thus far by ARPES.
Borisenko et al dispute this and suggest the two measurements are consistent if
some of the orbits we observe are due to magnetic breakdown. We argue here that
this scenario is inconsistent with the experimental data and therefore that our
original conclusion stands.Comment: 4 pages with figure
Field-induced nematic-like magnetic transition in an iron pnictide superconductor, Ca(PtAs)((FePt)As)
We report a high magnetic field study up to 55 T of the nearly optimally
doped iron-pnictide superconductor Ca(PtAs)
((FePt)As) (x=0.078(6)) with a Tc 10 K using
magnetic torque, tunnel diode oscillator technique and transport measurements.
We determine the superconducting phase diagram, revealing an anisotropy of the
irreversibility field up to a factor of 10 near Tc and signatures of multiband
superconductivity. Unexpectedly, we find a spin-flop like anomaly in magnetic
torque at 22 T, when the magnetic field is applied perpendicular to the ab
planes, which becomes significantly more pronounced as the temperature is
lowered to 0.33 K. As our superconducting sample lies well outside the
antiferromagnetic region of the phase diagram, the observed field-induced
transition in torque indicates a spin-flop transition not of long-range ordered
moments, but of nematic-like antiferromagnetic fluctuations.Comment: Latex, 4 figure
Magnetic oscillations in a two-dimensional network of compensated electron and hole orbits
The FS of (ET)8Hg4Cl12(C6H5Br)2 can be regarded as a 2D network of
compensated electron and hole orbits coupled by magnetic breakthrough.
Simultaneous measurements of the interlayer magnetoresistance and magnetic
torque have been performed up to 28 T. Magnetoresistance and de dHvA
oscillations spectra exhibit frequency combinations typical of such a network.
Even though some of the observed magnetoresistance oscillations cannot be
interpreted on the basis of neither conventional SdH oscillations nor quantum
interference, the temperature and magnetic field (both orientation and
magnitude) dependence of all the Fourier components of the dHvA spectra can be
consistently accounted for by the LK formula. This behaviour is at variance
with that currently reported for compounds illustrating the linear chain of
coupled orbits model.Comment: accepted for publication in europhysics Letter
de Haas-van Alphen oscillations in the underdoped cuprate YBaCuO
The de Haas-van Alphen effect was observed in the underdoped cuprate
YBaCuO via a torque technique in pulsed magnetic fields up to
59 T. Above an irreversibility field of 30 T, the magnetization exhibits
clear quantum oscillations with a single frequency of 540 T and a cyclotron
mass of 1.76 times the free electron mass, in excellent agreement with
previously observed Shubnikov-de Haas oscillations. The oscillations obey the
standard Lifshitz-Kosevich formula of Fermi-liquid theory. This thermodynamic
observation of quantum oscillations confirms the existence of a well-defined,
close and coherent, Fermi surface in the pseudogap phase of cuprates.Comment: published versio
Evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 on entering the superconducting dome
Using the de Haas-van Alphen effect we have measured the evolution of the
Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution
(As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and
hole Fermi surfaces shrink linearly with decreasing x. This shrinking is
accompanied by a strong increase in the quasiparticle effective mass as x is
tuned toward the maximum T_c. It is likely that these trends originate from the
many-body interaction which give rise to superconductivity, rather than the
underlying one-electron bandstructure.Comment: 4 page
The potential for remote sensing and hydrologic modelling to assess the spatio-temporal dynamics of ponds in the Ferlo Region (Senegal)
In the Ferlo Region in Senegal, livestock depend on temporary ponds for water but are exposed to the Rift Valley Fever (RVF), a disease transmitted to herds by mosquitoes which develop in these ponds. Mosquito abundance is related to the emptying and filling phases of the ponds, and in order to study the epidemiology of RVF, pond modelling is required. In the context of a data scarce region, a simple hydrologic model which makes use of remote sensing data was developed to simulate pond water dynamics from daily rainfall. Two sets of ponds were considered: those located in the main stream of the Ferlo Valley whose hydrological dynamics are essentially due to runoff, and the ponds located outside, which are smaller and whose filling mechanisms are mainly due to direct rainfall. Separate calibrations and validations were made for each set of ponds. Calibration was performed from daily field data (rainfall, water level) collected during the 2001 and 2002 rainy seasons and from three different sources of remote sensing data: 1) very high spatial resolution optical satellite images to access pond location and surface area at given dates, 2) Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Digital Elevation Model (DEM) data to estimate pond catchment area and 3) Tropical Rainfall Measuring Mission (TRMM) data for rainfall estimates. The model was applied to all ponds of the study area, the results were validated and a sensitivity analysis was performed. Water height simulations using gauge rainfall as input were compared to water level measurements from four ponds and Nash coefficients >0.7 were obtained. Comparison with simulations using TRMM rainfall data gave mixed results, with poor water height simulations for the year 2001 and good estimations for the year 2002. A pond map derived from a Quickbird satellite image was used to assess model accuracy for simulating pond water areas for all the ponds of the study area. The validation showed that modelled water areas were mostly underestimated but significantly correlated, particularly for the larger ponds. The results of the sensitivity analysis showed that parameters relative to pond shape and catchment area estimation have less effects on model simulation than parameters relative to soil properties (rainfall threshold causing runoff in dry soils and the coefficient expressing soil moisture decrease with time) or the water loss coefficient. Overall, our results demonstrate the possibility of using a simple hydrologic model with remote sensing data to track pond water heights and water areas in a homogeneous arid area
- …