976 research outputs found

    Electronic structure basis for the titanic magnetoresistance in WTe2_2

    Full text link
    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. A change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior of the magnetoresistance in WTe2_2 was identified

    Gapped Surface States in a Strong-Topological-Semimetal

    Full text link
    A three-dimensional strong-topological-insulator or -semimetal hosts topological surface states which are often said to be gapless so long as time-reversal symmetry is preserved. This narrative can be mistaken when surface state degeneracies occur away from time-reversal-invariant momenta. The mirror-invariance of the system then becomes essential in protecting the existence of a surface Fermi surface. Here we show that such a case exists in the strong-topological-semimetal Bi4_4Se3_3. Angle-resolved photoemission spectroscopy and \textit{ab initio} calculations reveal partial gapping of surface bands on the Bi2_2Se3_3-termination of Bi4_4Se3_3(111), where an 85 meV gap along ΓˉKˉ\bar{\Gamma}\bar{K} closes to zero toward the mirror-invariant ΓˉMˉ\bar{\Gamma}\bar{M} azimuth. The gap opening is attributed to an interband spin-orbit interaction that mixes states of opposite spin-helicity.Comment: 5 pages, 3 figure

    Tunneling in graphene-topological insulator hybrid devices

    Get PDF
    Hybrid graphene-topological insulator (TI) devices were fabricated using a mechanical transfer method and studied via electronic transport. Devices consisting of bilayer graphene (BLG) under the TI Bi2_2Se3_3 exhibit differential conductance characteristics which appear to be dominated by tunneling, roughly reproducing the Bi2_2Se3_3 density of states. Similar results were obtained for BLG on top of Bi2_2Se3_3, with 10-fold greater conductance consistent with a larger contact area due to better surface conformity. The devices further show evidence of inelastic phonon-assisted tunneling processes involving both Bi2_2Se3_3 and graphene phonons. These processes favor phonons which compensate for momentum mismatch between the TI Γ\Gamma and graphene K,K′K, K' points. Finally, the utility of these tunnel junctions is demonstrated on a density-tunable BLG device, where the charge-neutrality point is traced along the energy-density trajectory. This trajectory is used as a measure of the ground-state density of states

    Quasiparticle Liquid in the Highly Overdoped Bi2212

    Full text link
    We present results from the study of a highly overdoped (OD) Bi2212 with a Tc=51T_{c}=51K using high resolution angle-resolved photoemission spectroscopy. The temperature dependent spectra near the (Ï€,0\pi,0) point show the presence of the sharp peak well above TcT_{c}. From the nodal direction, we make comparison of the self-energy with the optimally doped and underdoped cuprates, and the Mo(110) surface state. We show that this OD cuprate appears to have properties that approach that of the Mo. Further analysis shows that the OD has a more kk-independent lineshape at the Fermi surface than the lower-doped cuprates. This allows for a realistic comparison of the nodal lifetime values to the experimental resistivity measurements via Boltzmann transport formulation. All these observations point to the validity of the quasiparticle picture for the OD even in the normal state within a certain energy and momentum range.Comment: 4 pages, 4 figure
    • …
    corecore