179 research outputs found
Late Quaternary evolution of alluvial fans in the Playa, El Fresnal region, northern Chihuahua desert, Mexico: Palaeoclimatic implications
The Playa El Fresnal area is a tilted terrane characteristic of an extensional basin. It is a half graben/tilted-block system with a playa-lake on the basin floor flanked by piedmonts covered by alluvial fans. Structural heterogeneities within normal fault zones influenced the geomorphic expression of the uplifted footwall blocks of associated volcanism, and the downdropped hanging wall. The footwall area is the main sediment source, but the hanging wall-derived sediments are more extensive. The ancient alluvial fans are in the distal part, whereas the hanging-wall sediments are located in the apex area. A geomorphic analysis of the relative topographic position of the alluvial fans, degree of dissection of the original surfaces, general sedimentology (facies description), and stream channel network type, highlights the importance of climatic change in interpreting alluvial-fan surfaces. Three generations of alluvial fans were identified on the footwall and hanging wall slopes. They were formed during the late Quaternary climatic shift, consistent with the main climatic changes recorded in the paleolake stratig-raphy of northern Mexico and the American Southwest. These alluvial fans consist mainly of debris-flow deposits from flash floods, probably triggered by a change from relatively moist to arid conditions. They contrast with the typically lower-flow-regime of thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences of rivers
Late Quaternary evolution of alluvial fans in the Playa, El Fresnal region, northern Chihuahua desert, Mexico: Palaeoclimatic implications
The Playa El Fresnal area is a tilted terrane characteristic of an extensional basin. It is a half graben/tilted-block system with a playa-lake on the basin floor flanked by piedmonts covered by alluvial fans. Structural heterogeneities within normal fault zones influenced the geomorphic expression of the uplifted footwall blocks of associated volcanism, and the downdropped hanging wall. The footwall area is the main sediment source, but the hanging wall-derived sediments are more extensive. The ancient alluvial fans are in the distal part, whereas the hanging-wall sediments are located in the apex area. A geomorphic analysis of the relative topographic position of the alluvial fans, degree of dissection of the original surfaces, general sedimentology (facies description), and stream channel network type, highlights the importance of climatic change in interpreting alluvial-fan surfaces. Three generations of alluvial fans were identified on the footwall and hanging wall slopes. They were formed during the late Quaternary climatic shift, consistent with the main climatic changes recorded in the paleolake stratig-raphy of northern Mexico and the American Southwest. These alluvial fans consist mainly of debris-flow deposits from flash floods, probably triggered by a change from relatively moist to arid conditions. They contrast with the typically lower-flow-regime of thick-bedded, cross-bedded, and lenticular channel facies, and associated floodplain sequences of rivers
Regeneration niche differentiates functional strategies of desert woody plant species
Plant communities vary dramatically in the number and relative abundance of species that exhibit facilitative interactions, which contributes substantially to variation in community structure and dynamics. Predicting species’ responses to neighbors based on readily measurable functional traits would provide important insight into the factors that structure plant communities. We measured a suite of functional traits on seedlings of 20 species and mature plants of 54 species of shrubs from three arid biogeographic regions. We hypothesized that species with different regeneration niches—those that require nurse plants for establishment (beneficiaries) versus those that do not (colonizers)—are functionally different. Indeed, seedlings of beneficiary species had lower relative growth rates, larger seeds and final biomass, allocated biomass toward roots and height at a cost to leaf mass fraction, and constructed costly, dense leaf and root tissues relative to colonizers. Likewise at maturity, beneficiaries had larger overall size and denser leaves coupled with greater water use efficiency than colonizers. In contrast to current hypotheses that suggest beneficiaries are less “stress-tolerant” than colonizers, beneficiaries exhibited conservative functional strategies suited to persistently dry, low light conditions beneath canopies, whereas colonizers exhibited opportunistic strategies that may be advantageous in fluctuating, open microenvironments. In addition, the signature of the regeneration niche at maturity indicates that facilitation expands the range of functional diversity within plant communities at all ontogenetic stages. This study demonstrates the utility of specific functional traits for predicting species’ regeneration niches in hot deserts, and provides a framework for studying facilitation in other severe environments
Beyond species loss: The extinction of ecological interactions in a changing world
© 2014 The Authors. The effects of the present biodiversity crisis have been largely focused on the loss of species. However, a missed component of biodiversity loss that often accompanies or even precedes species disappearance is the extinction of ecological interactions. Here, we propose a novel model that (i) relates the diversity of both species and interactions along a gradient of environmental deterioration and (ii) explores how the rate of loss of ecological functions, and consequently of ecosystem services, can be accelerated or restrained depending on how the rate of species loss covaries with the rate of interactions loss. We find that the loss of species and interactions are decoupled, such that ecological interactions are often lost at a higher rate. This implies that the loss of ecological interactions may occur well before species disappearance, affecting species functionality and ecosystems services at a faster rate than species extinctions. We provide a number of empirical case studies illustrating these points. Our approach emphasizes the importance of focusing on species interactions as the major biodiversity component from which the 'health' of ecosystems depends.Peer Reviewe
Developmental Reaction Norms for Water Stressed Seedlings of Succulent Cacti
Succulent cacti are remarkable plants with capabilities to withstand long periods of drought. However, their adult success is contingent on the early seedling stages, when plants are highly susceptible to the environment. To better understand their early coping strategies in a challenging environment, two developmental aspects (anatomy and morphology) in Polaskia chichipe and Echinocactus platyacanthus were studied in the context of developmental reaction norms under drought conditions. The morphology was evaluated using landmark based morphometrics and Principal Component Analysis, which gave three main trends of the variation in each species. The anatomy was quantified as number and area of xylem vessels. The quantitative relationship between morphology and anatomy in early stages of development, as a response to drought was revealed in these two species. Qualitatively, collapsible cells and collapsible parenchyma tissue were observed in seedlings of both species, more often in those subjected to water stress. These tissues were located inside the epidermis, resembling a web of collapsible-cell groups surrounding turgid cells, vascular bundles, and spanned across the pith. Occasionally the groups formed a continuum stretching from the epidermis towards the vasculature. Integrating the morphology and the anatomy in a developmental context as a response to environmental conditions provides a better understanding of the organism's dynamics, adaptation, and plasticity
The signatures of Anthropocene defaunation: cascading effects of the seed dispersal collapse
Anthropogenic activity is driving population declines and extinctions of large-bodied, fruit-eating animals worldwide. Loss of these frugivores is expected to trigger negative cascading effects on plant populations if remnant species fail to replace the seed dispersal services provided by the extinct frugivores. A collapse of seed dispersal may not only affect plant demography (i.e., lack of recruitment), but should also supress gene flow via seed dispersal. Yet little empirical data still exist demonstrating the genetic consequences of defaunation for animal-dispersed plant species. Here, we first document a significant reduction of seed dispersal distances along a gradient of human-driven defaunation, with increasing loss of large- and medium-bodied frugivores. We then show that local plant neighbourhoods have higher genetic similarity and smaller effective population sizes when large seed dispersers become extinct (i.e., only small frugivores remain) or are even partially downgraded (i.e., medium-sized frugivores providing less efficient seed dispersal). Our results demonstrate that preservation of large frugivores is crucial to maintain functional seed dispersal services and their associated genetic imprints, a central conservation target. Early signals of reduced dispersal distances that accompany the Anthropogenic defaunation forecast multiple, cascading effects on plant populations
Local and Landscape Factors Determining Occurrence of Phyllostomid Bats in Tropical Secondary Forests
Neotropical forests are being increasingly replaced by a mosaic of patches of different successional stages, agricultural fields and pasture lands. Consequently, the identification of factors shaping the performance of taxa in anthropogenic landscapes is gaining importance, especially for taxa playing critical roles in ecosystem functioning. As phyllostomid bats provide important ecological services through seed dispersal, pollination and control of animal populations, in this study we assessed the relationships between phyllostomid occurrence and the variation in local and landscape level habitat attributes caused by disturbance. We mist-netted phyllostomids in 12 sites representing 4 successional stages of a tropical dry forest (initial, early, intermediate and late). We also quantitatively characterized the habitat attributes at the local (vegetation structure complexity) and the landscape level (forest cover, area and diversity of patches). Two focal scales were considered for landscape characterization: 500 and 1000 m. During 142 sampling nights, we captured 606 individuals representing 15 species and 4 broad guilds. Variation in phyllostomid assemblages, ensembles and populations was associated with variation in local and landscape habitat attributes, and this association was scale-dependent. Specifically, we found a marked guild-specific response, where the abundance of nectarivores tended to be negatively associated with the mean area of dry forest patches, while the abundance of frugivores was positively associated with the percentage of riparian forest. These results are explained by the prevalence of chiropterophilic species in the dry forest and of chiropterochorous species in the riparian forest. Our results indicate that different vegetation classes, as well as a multi-spatial scale approach must be considered for evaluating bat response to variation in landscape attributes. Moreover, for the long-term conservation of phyllostomids in anthropogenic landscapes, we must realize that the management of the habitat at the landscape level is as important as the conservation of particular forest fragments
- …