91 research outputs found

    The impact of Opisthorchis felineus infection and praziquantel treatment on the intestinal microbiota in children

    Full text link
    peer reviewedThe presence of some species of helminths is associated with changes in host microbiota composition and diversity, which varies widely depending on the infecting helminth species and other factors. We conducted a prospective case-control study to evaluate the gut microbiota in children with Opisthorchis felineus infection (n=50) before and after anthelmintic treatment and in uninfected children (n=49) in the endemic region. A total of 99 children and adolescents aged between 7 and 18 years were enrolled to the study. Helminth infection was assessed before and at 3 months after treatment with praziquantel. A complex examination for each participant was performed in the study, including an assessment of the clinical symptoms and an intestinal microbiota survey by 16S rRNA gene sequencing of stool samples. There was no change in alpha diversity between O. felineus-infected and control groups. We found significant changes in the abundances of bacterial taxa at different taxonomic levels between the infected and uninfected individuals. Enterobacteriaceae family was more abundant in infected participants compared to uninfected children. On the genus level, O. felineus-infected participants’ microbiota showed higher levels of Lachnospira, Escherichia-Shigella, Bacteroides, Eubacterium eligens group, Ruminiclostridium 6, Barnesiella, Oscillibacter, Faecalitalea and Anaerosporobacter and reduction of Blautia, Lachnospiraceae FCS020 and Eubacterium hallii group in comparison with the uninfected individuals. Following praziquantel therapy, there were significant differences in abundances of some microorganisms, including an increase of Faecalibacterium and decrease of Megasphaera, Roseburia. Enterobacteriaceae and Escherichia abundances were decreased up to the control group values. Our results highlight the importance of the host-parasite-microbiota interactions for the community health in the endemic regions. © 202

    Microbiome Responses to an Uncontrolled Short-Term Diet Intervention in the Frame of the Citizen Science Project

    Get PDF
    Personalized nutrition is of increasing interest to individuals actively monitoring their health. The relations between the duration of diet intervention and the effects on gut microbiota have yet to be elucidated. Here we examined the associations of short-term dietary changes, long-term dietary habits and lifestyle with gut microbiota. Stool samples from 248 citizen-science volunteers were collected before and after a self-reported 2-week personalized diet intervention, then analyzed using 16S rRNA sequencing. Considerable correlations between long-term dietary habits and gut community structure were detected. A higher intake of vegetables and fruits was associated with increased levels of butyrate-producing Clostridiales and higher community richness. A paired comparison of the metagenomes before and after the 2-week intervention showed that even a brief, uncontrolled intervention produced profound changes in community structure: resulting in decreased levels of Bacteroidaceae, Porphyromonadaceae and Rikenellaceae families and decreased alpha-diversity coupled with an increase of Methanobrevibacter, Bifidobacterium, Clostridium and butyrate-producing Lachnospiraceae- as well as the prevalence of a permatype (a bootstrapping-based variation of enterotype) associated with a higher diversity of diet. The response of microbiota to the intervention was dependent on the initial microbiota state. These findings pave the way for the development of an individualized diet.</p

    Correlation between emotional-affective disorders and gut microbiota composition in patients with Parkinson's disease

    Full text link
    Background: Despite the efforts of scientific community the data available on the correlation between emotional-affective symptoms of Parkinson's disease and changes in microbiome is still scarce. Deeper studies of nonmotor symptoms evident in premotor stages of the disease and the reciprocal influence of microbiota may help to understand the etiology and pathogenesis of PD neurodegeneration better. The aim of the study was to discover the relations between emotional-affective disorders prevalent in PD population and changes in gut microbiota composition. Methods:51 patient diagnosed with PD participated in the study. Every participant's emotional-affective state was examined using Beck's Depression Inventory (BDI) and Hospital Anxiety and Depression Scale (HADS). Taxonomic richness of microbiome was studied using 16S ribosomal RNA gene sequencing, bioinformatics, and statistical analysis. Results: Anxiety and depression are prevalent affective disorders in patients with PD. In our study, most of the subjects demonstrated certain anxiety and depression. Taxonomic diversity of gut microbiota in BP was increasing with the increase in anxiety levels, reaching the maximum in the group with subclinical anxiety, and decreasing in the group with clinically significant anxiety disorder. At the species level, patients with clinically significant anxiety had higher abundance of Clostridium clariflavum compared to the anxiety-free patients. Patients with moderate depression were characterized by the higher prevalence of Christensenella minuta, Clostridium disporicum, and Oscillibacter valericigenes compared to subjects without depression or with mild depression. Conclusion: The data we received in our study allow better understanding of PD pathogenesis

    Data on gut metagenomes of the patients with Helicobacter pylori infection before and after the antibiotic therapy

    Get PDF
    © 2017Antibiotic therapy can lead to the disruption of gut microbiota community with possible negative outcomes for human health. One of the diseases for which the treatment scheme commonly included antibiotic intake is Helicobacter pylori infection. The changes in taxonomic and functional composition of microbiota in patients can be assessed using “shotgun” metagenomic sequencing. Ten stool samples were collected from 4 patients with Helicobacter pylori infection before and directly after the H. pylori eradication course. Additionally, for two of the subjects, the samples were collected 1 month after the end of the treatment. The samples were subject to “shotgun” (whole-genome) metagenomic sequencing using Illumina HiSeq platform. The reads are deposited in the ENA (project ID: PRJEB18265)

    RNA-Seq gene expression profiling of HepG2 cells: The influence of experimental factors and comparison with liver tissue

    Get PDF
    © Tyakht et al.; licensee BioMed Central. Background: Human hepatoma HepG2 cells are used as an in vitro model of the human liver. High-throughput transcriptomic sequencing is an advanced approach for assessing the functional state of a tissue or cell type. However, the influence of experimental factors, such as the sample preparation method and inter-laboratory variation, on the transcriptomic profile has not been evaluated. Results: The whole-transcriptome sequencing of HepG2 cells was performed using the SOLiD platform and validated using droplet digital PCR. The gene expression profile was compared to the results obtained with the same sequencing method in another laboratory and using another sample preparation method. We also compared the transcriptomic profile HepG2 cells with that of liver tissue. Comparison of the gene expression profiles between the HepG2 cell line and liver tissue revealed the highest variation, followed by HepG2 cells submitted to two different sample preparation protocols. The lowest variation was observed between HepG2 cells prepared by two different laboratories using the same protocol. The enrichment analysis of the genes that were differentially expressed between HepG2 cells and liver tissue mainly revealed the cancer-associated gene signature of HepG2 cells and the activation of the response to chemical stimuli in the liver tissue. The HepG2 transcriptome obtained with the SOLiD platform was highly correlated with the published transcriptome obtained with the Illumina and Helicos platforms, with moderate correspondence to microarrays. Conclusions: In the present study, we assessed the influence of experimental factors on the HepG2 transcriptome and identified differences in gene expression between the HepG2 cell line and liver cells. These findings will facilitate robust experimental design in the fields of pharmacology and toxicology. Our results were supported by a comparative analysis with previous HepG2 gene expression studies

    Gut Microbiome Shotgun Sequencing in Assessment of Microbial Community Changes Associated with H. pylori Eradication Therapy

    Get PDF
    © 2016, Springer Science+Business Media New York.Disturbance of intestinal microbiota content and functions often results in different pathological conditions. Pharmacotherapy including antibiotics use is one of the factors leading to dysbiosis. To evaluate the influence of antibiotics use on intestinal microbiota metagenomic profiles of stool, samples of 74 patients before and after Helicobacter pylori—eradication therapy—were analyzed. Evaluation of taxonomic diversity changes based on Shannon index and Bray-Curtis metrics allows to range patients according to mild, moderate, and severe risk of disturbance of intestinal microbiota pathological conditions

    Human gut microbiota community structures in urban and rural populations in Russia

    Get PDF
    The microbial community of the human gut has a crucial role in sustaining host homeostasis. High-throughput DNA sequencing has delineated the structural and functional configurations of gut metagenomes in world populations. The microbiota of the Russian population is of particular interest to researchers, because Russia encompasses a uniquely wide range of environmental conditions and ethnogeographical cohorts. Here we conduct a shotgun metagenomic analysis of gut microbiota samples from 96 healthy Russian adult subjects, which reveals novel microbial community structures. The communities from several rural regions display similarities within each region and are dominated by the bacterial taxa associated with the healthy gut. Functional analysis shows that the metabolic pathways exhibiting differential abundance in the novel types are primarily associated with the trade-off between the Bacteroidetes and Firmicutes phyla. The specific signatures of the Russian gut microbiota are likely linked to the host diet, cultural habits and socioeconomic status. © 2013 Macmillan Publishers Limited. All rights reserved

    Genetic diversity of Escherichia coli in gut microbiota of patients with Crohn's disease discovered using metagenomic and genomic analyses

    Get PDF
    © 2018 The Author(s). Background: Crohn's disease is associated with gut dysbiosis. Independent studies have shown an increase in the abundance of certain bacterial species, particularly Escherichia coli with the adherent-invasive pathotype, in the gut. The role of these species in this disease needs to be elucidated. Methods: We performed a metagenomic study investigating the gut microbiota of patients with Crohn's disease. A metagenomic reconstruction of the consensus genome content of the species was used to assess the genetic variability. Results: The abnormal shifts in the microbial community structures in Crohn's disease were heterogeneous among the patients. The metagenomic data suggested the existence of multiple E. coli strains within individual patients. We discovered that the genetic diversity of the species was high and that only a few samples manifested similarity to the adherent-invasive varieties. The other species demonstrated genetic diversity comparable to that observed in the healthy subjects. Our results were supported by a comparison of the sequenced genomes of isolates from the same microbiota samples and a meta-analysis of published gut metagenomes. Conclusions: The genomic diversity of Crohn's disease-associated E. coli within and among the patients paves the way towards an understanding of the microbial mechanisms underlying the onset and progression of the Crohn's disease and the development of new strategies for the prevention and treatment of this disease
    corecore