236 research outputs found

    Internal Time Peculiarities as a Cause of Bifurcations Arising in Classical Trajectory Problem and Quantum Chaos Creation in Three-Body System

    Full text link
    A new formulation of the theory of quantum mechanical multichannel scattering for three-body collinear systems is proposed. It is shown, that in this simple case the principle of quantum determinism in the general case breaks down and we have a micro-irreversible quantum mechanics. The first principle calculations of the quantum chaos (wave chaos) were pursued on the example of an elementary chemical reaction Li+(FH)->(LiFH)*->(LiF)+H.Comment: 7 pages, 3 figures, accepted for publication in Int. J. of Bifurcation & Chao

    New Perturbation Theory for Nonstationary Anharmonic Oscillator

    Full text link
    The new perturbation theory for the problem of nonstationary anharmonic oscillator with polynomial nonstationary perturbation is proposed. As a zero order approximation the exact wave function of harmonic oscillator with variable frequency in external field is used. Based on some intrinsic properties of unperturbed wave function the variational-iterational method is proposed, that make it possible to correct both the amplitude and the phase of wave function. As an application the first order correction are proposed both for wave function and S-matrix elements for asymmetric perturbation potential of type V(x,τ)=α(τ)x3+β(τ)x4.V(x,\tau)=\alpha (\tau)x^3+\beta (\tau)x^4. The transition amplitude ''ground state - ground state'' W00(λ;ρ)W_{00}(\lambda ;\rho) is analyzed in detail depending on perturbation parameter λ\lambda (including strong coupling region % \lambda 1\sim 1) and one-dimensional refraction coefficient ρ\rho .Comment: LaTeX, 13 page
    corecore