100 research outputs found

    Low-temperature barrier discharge plasma modification of scaffolds based on polylactic acid

    Get PDF
    We have explored the effect of low-temperature barrier discharge plasma treatment in oxygen, nitrogen, and argon on modification of the physicochemical properties of polylactic acid (PLA)-based scaffolds. The cellular-mediated immune response to the interaction of macrophages of three donors with the modified surface of PLA-based scaffolds was also nvestigated. Carbonization of the PLA surface accompanied by a carbon atomic concentration increase is shown to occur following plasma treatment. Argon plasma significantly affects the wettability characteristics of PLA; the hydrophilicity and lipophilicity are improved, and the surface energy is increased. The viability of cells in the presence of plasma-modified PLA scaffolds is lower than that for unmodified PLA but remains greater than that for the negative control. We find that PLA scaffolds do not cause increased expression of the proinflammatory (TNFα, IL-6, IL-1β) cytokines after 6 days of cell cultivation. At the same time, PLA scaffolds do not affect the increased production of anti-inflammatory cytokines (IL-10)

    Development of low-temperature thermochemical conversion reactors for coal power engineering

    Full text link
    The main principles applied in developing a technology for low-temperature thermochemical conversion of brown coals to obtain fuel gas and semicoke intended for being fired in two-fuel power installations are considered on the basis of a set of experimental and calculated investigations. The obtained results are compared with the experimental data obtained using other methods and with the results of previous industrial tests. © 2013 Pleiades Publishing, Inc

    Radiation thermal processes in Cr13Mo2NbVB steel - the material of the fuel assembly shell in reactor BN-350 under mechanical tests

    Get PDF
    Regularities of changes of structural-phase state and mechanical properties of steel 13Mo2NbVB - the material of the fuel assembly shell in reactor BN-350 after various mechanical tests at 350°C are experimentally studied. The formation of microprecipitations FeMo, enriched or depleted with molybdenum was found in the short-time mechanical tests, which is the cause of thermal hardening of irradiated Cr13Mo2NbVB steel and its destruction by the ductile-brittle mechanism. On the basis of long-time creep tests it was shown that the material of the spent fuel assembly shell has sufficient resource for long-time storage in the temperature and force conditions simulating long-time storage of spent nuclear fuel

    Lattice dynamics in the double-helix antiferromagnet FeP

    Full text link
    We present a comprehensive investigation of lattice dynamics in the double-helix antiferromagnet FeP by means of high-resolution time-of-flight neutron spectroscopy and ab-initio calculations. Phonons can hybridize with the magnetic excitations in noncollinear magnets to significantly influence their properties. We observed a rich spectrum of phonon excitations, which extends up to \sim50 meV. We performed detailed analysis of the observed and calculated spectra for all high-symmetry points and high-symmetry directions of the Brillouin zone. We show that the DFT calculations quantitatively capture the essential features of the observed phonons, including both dispersions and scattering intensities. By making use of the detailed intensity comparison between the theory and the data, we were able to identify displacement vectors for the majority of the observed modes. The overall excellent agreement between the DFT predictions and the experimental results breaks down for the lowest mode at the YY-point, whose energy is lower than calculated by \sim13%. The present study provides vital information on the lattice dynamics in FeP and demonstrates applicability of the DFT to novel pressure-induced phenomena in related materials, such as MnP and CrAs.Comment: 12 pages, 10 figure

    Directional Sensitivity of the NEWSdm Experiment to Cosmic Ray Boosted Dark Matter

    Full text link
    We present a study of a directional search for Dark Matter boosted forward when scattered by cosmic-ray nuclei, using a module of the NEWSdm experiment. The boosted Dark Matter flux at the edge of the Earth's atmosphere is expected to be pointing to the Galactic Center, with a flux 15 to 20 times larger than in the transverse direction. The module of the NEWSdm experiment consists of a 10 kg stack of Nano Imaging Trackers, i.e.~newly developed nuclear emulsions with AgBr crystal sizes down to a few tens of nanometers. The module is installed on an equatorial telescope. The relatively long recoil tracks induced by boosted Dark Matter, combined with the nanometric granularity of the emulsion, result in an extremely low background. This makes an installation at the INFN Gran Sasso laboratory, both on the surface and underground, viable. A comparison between the two locations is made. The angular distribution of nuclear recoils induced by boosted Dark Matter in the emulsion films at the surface laboratory is expected to show an excess with a factor of 3.5 in the direction of the Galactic Center. This excess allows for a Dark Matter search with directional sensitivity. The surface laboratory configuration prevents the deterioration of the signal in the rock overburden and it emerges as the most powerful approach for a directional observation of boosted Dark Matter with high sensitivity. We show that, with this approach, a 10 kg module of the NEWSdm experiment exposed for one year at the Gran Sasso surface laboratory can probe Dark Matter masses between 1 keV/c2^2 and 1 GeV/c2^2 and cross-section values down to 103010^{-30}~cm2^2 with a directional sensitive search.Comment: 15 pages, 14 figures, updated references, clarified discussion in intro section. Submitted to JCA

    NEWSdm Collaboration

    Get PDF
    Direct Dark Matter searches are nowadays one of the most fervid research topics with many experimental efforts devoted to the search for nuclear recoils induced by the scattering of Weakly Interactive Massive Particles (WIMPs). Detectors able to reconstruct the direction of the nucleus recoiling against the scattering WIMP are opening a new frontier to possibly extend Dark Matter searches beyond the neutrino background. Exploiting directionality would also prove the galactic origin of Dark Matter with an unambiguous signal-to-background separation. Indeed, the angular distribution of recoiled nuclei is centered around the direction of the Cygnus constellation, while the background distribution is expected to be isotropic. Current directional experiments are based on gas TPC whose sensitivity is limited by the small achievable detector mass. In this paper we present the discovery potential of a directional experiment based on the use of a solid target made of newly developed nuclear emulsions and of optical read-out systems reaching unprecedented nanometric resolution
    corecore