139 research outputs found

    Signatures of spin-charge separation in scanning probe microscopy

    Full text link
    We analyze the effect of an auxiliary scatterer, such as the potential of a scanning tip, on the conductance of an interacting one-dimensional electron system. We find that the differential conductance for tunneling into the end of a semi-infinite quantum wire reflects the separation of the elementary excitations into spin and charge modes. The separation is revealed as a specific pattern in the dependence of the conductance on bias and on the position of the scatterer.Comment: 4 pages, 1 figure; published versio

    Coulomb drag as a signature of the paired quantum Hall state

    Full text link
    Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we study the Coulomb drag in a two-layer system with Landau level filling factor ν=1/2\nu=1/2. We find that the drag conductivity in the incompressible paired quantum Hall state at zero temperature can be finite. The drag conductivity is also greatly enhanced above TcT_c, at which the transition between the weakly coupled compressible liquids and the paired quantum Hall liquid takes place. We discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio

    Gaussian superconducting fluctuations, thermal transport, and the Nernst effect

    Full text link
    We calculate the contribution of superconducting fluctuations to thermal transport in the normal state, for low magnetic fields. We do so in the Gaussian approximation to their critical dynamics which is also the Aslamazov-Larkin approximation in the microscopics. Our results for the thermal conductivity tensor and the transverse thermoelectric response are new. The latter compare favorably with the data of Ong and collaborators on the Nernst effect in the cuprates.Comment: 4 pages, 1 figure; improved introduction, minor changes; published versio

    Nondissipative Drag Conductance as a Topological Quantum Number

    Full text link
    We show in this paper that the boundary condition averaged nondissipative drag conductance of two coupled mesoscopic rings with no tunneling, evaluated in a particular many-particle eigenstate, is a topological invariant characterized by a Chern integer. Physical implications of this observation are discussed.Comment: 4 pages, no figure. Title modified and significant revision made to the text. Final version appeared in PR

    Coulomb Drag in the Extreme Quantum Limit

    Get PDF
    Coulomb drag resulting from interlayer electron-electron scattering in double layer 2D electron systems at high magnetic field has been measured. Within the lowest Landau level the observed drag resistance exceeds its zero magnetic value by factors of typically 1000. At half-filling of the lowest Landau level in each layer (nu = 1/2) the data suggest that our bilayer systems are much more strongly correlated than recent theoretical models based on perturbatively coupled composite fermion metals.Comment: 4 pages, 4 figure

    Quasiparticles in the 111 state and its compressible ancestors

    Full text link
    We investigate the relationship of the spontaneously inter-layer coherent ``111''state of quantum Hall bilayers at total filling factor \nu=1 to ``mutual'' composite fermions, in which vortices in one layer are bound to electrons in the other. Pairing of the mutual composite fermions leads to the low-energy properties of the 111 state, as we explicitly demonstrate using field-theoretic techniques. Interpreting this relationship as a mechanism for inter-layer coherence leads naturally to two candidate states with non-quantized Hall conductance: the mutual composite Fermi liquid, and an inter-layer coherent charge e Wigner crystal. The experimental behavior of the interlayer tunneling conductance and resistivity tensors are discussed for these states.Comment: 4 Pages, RevTe

    Observation of the Nernst signal generated by fluctuating Cooper pairs

    Full text link
    Long-range order is destroyed in a superconductor warmed above its critical temperature (Tc). However, amplitude fluctuations of the superconducting order parameter survive and lead to a number of well established phenomena such as paraconductivity : an excess of charge conductivity due to the presence of short-lived Cooper pairs in the normal state. According to an untested theory, these pairs generate a transverse thermoelectric (Nernst) signal. In amorphous superconducting films, the lifetime of Cooper pairs exceeds the elastic lifetime of quasi-particles in a wide temperature range above Tc; consequently, the Cooper pairs Nernst signal dominate the response of the normal electrons well above Tc. In two dimensions, the magnitude of the expected signal depends only on universal constants and the superconducting coherence length, so the theory can be unambiguously tested. Here, we report on the observation of a Nernst signal in such a superconductor traced deep into the normal state. Since the amplitude of this signal is in excellent agreement with the theoretical prediction, the result provides the first unambiguous case for a Nernst effect produced by short-lived Cooper pairs

    Coulomb Drag at the Onset of Anderson Insulators

    Full text link
    It is shown that the Coulomb drag between two identical layers in the Anderson insulting state indicates a striking difference between the Mott and Efros-Shklovskii (ES) insulators. In the former, the trans-resistance ρt\rho_t is monotonically increasing with the localization length ξ\xi; in the latter, the presence of a Coulomb gap leads to an opposite result: ρt\rho_t is enhanced with a decreasing ξ\xi, with the same exponential factor as the single layer resistivity. This distinction reflects the relatively pronounced role of excited density fluctuations in the ES state, implied by the enhancement in the rate of hopping processes at low frequencies. The magnitude of drag is estimated for typical experimental parameters in the different cases. It is concluded that a measurement of drag can be used to distinguish between interacting and non-interacting insulating state.Comment: 15 pages, revte

    Nernst Effect and Anomalous Transport in Cuprates: A Preformed-Pair Alternative to the Vortex Scenario

    Full text link
    We address those puzzling experiments in underdoped high TcT_c superconductors which have been associated with normal state "vortices" and show these data can be understood as deriving from preformed pairs with onset temperature T>TcT^* > T_c. For uncorrelated bosons in small magnetic fields, and arbitrary T/TcT^*/T_c, we present the exact contribution to \textit{all} transport coefficients. In the overdoped regime our results reduce to those of standard fluctuation theories (TTcT^*\approx T_c). Semi-quantitative agreement with Nernst, ac conductivity and diamagnetic measurements is quite reasonable.Comment: 9 pages, 4 figures; Title, abstract and contents modified, new references added, figures changed, one more figure added; to be published on PR
    corecore