18 research outputs found

    Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology.

    Get PDF
    To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression

    Klf8 And Fak Cooperatively Enrich The Active Mmp14 On The Cell Surface Required For The Metastatic Progression Of Breast Cancer

    No full text
    Krüppel-like factor 8 (KLF8) regulates critical gene transcription associated with cancer. The underlying mechanisms, however, remain largely unidentified. We have recently demonstrated that KLF8 expression enhances the activity but not expression of matrix metalloproteinase-2 (MMP2), the target substrate of MMP14. Here, we report a novel KLF8 to MMP14 signaling that promotes human breast cancer invasion and metastasis. Using cell lines for inducible expression and knockdown of KLF8, we demonstrate that KLF8 promotes MMP14 expression at the transcriptional level. Knocking down KLF8 expression inhibited the breast cancer cell invasion both in vitro and in vivo as well as the lung metastasis in mice, which could be rescued by ectopic expression of MMP14. Promoter reporter assays and oligonucleotide and chromatin immunoprecipitations determined that KLF8 activates the human MMP14 gene promoter by both directly acting on the promoter and indirectly via promoting the nuclear translocation of β-catenin, the expression of T-cell factor-1 (TCF1) and subsequent activation of the promoter by the β-catenin/TCF1 complex. Inhibition of focal adhesion kinase (FAK) using pharmacological inhibitor, RNA interference or knockout showed that the cell surface presentation of active MMP14 downstream of KLF8 depends on FAK expression and activity. Taken together, this work identified novel signaling mechanisms by which KLF8 and FAK work together to promote the extracellular activity of MMP14 critical for breast cancer metastasis. © 2014 Macmillan Publishers Limited All rights reserved

    Klf8 Promotes Human Breast Cancer Cell Invasion And Metastasis By Transcriptional Activation Of Mmp9

    No full text
    Epithelial to mesenchymal transition (EMT) and extracellular matrix degradation are critical for the initiation and progression of tumor invasion. We have recently identified Krüppel-like factor 8 (KLF8) as a critical inducer of EMT and invasion. KLF8 induces EMT primarily by repressing E-cadherin transcription. However, how KLF8 promotes invasion is unknown. Here, we report a novel KLF8-to- matrix metalloproteinase (MMP)9 signaling that promotes human breast cancer invasion. To identify the potential KLF8 regulation of MMPs in breast cancer, we established two inducible cell lines that allow either KLF8 overexpression in MCF-10A or knockdown in MDA-MB-231 cells. KLF8 overexpression induced a strong increase in MMP9 expression and activity as determined by quantitative real-time PCR and zymography. This induction was well correlated with the MMP inhibitor-sensitive Matrigel invasion. Conversely, KLF8 knockdown caused the opposite changes that could be partially prevented by MMP9 overexpression. Promoter-reporter assays and chromatin and oligonucleotide precipitations determined that KLF8 directly bound and activated the human MMP9 gene promoter. Three-dimensional (3D) glandular culture showed that KLF8 expression disrupted the normal acinus formation, which could be prevented by the MMP inhibitor, whereas KLF8 knockdown corrected the abnormal 3D architecture, which could be protected by MMP9 overexpression. KLF8 knockdown promoted MDA-MB-231 cell aggregation in suspension culture, which could be prevented by MMP9 overexpression. KLF8 knockdown inhibited the lung metastasis of MDA-MB-231 cells in nude mice. Immunohistochemical staining strongly correlated the co-expression of KLF8 and MMP9 with the patient tumor invasion, metastasis and poor survival. Taken together, this work identified the KLF8 activation of MMP9 as a novel and critical signaling mechanism underlying human breast cancer invasion and metastasis. © 2011 Macmillan Publishers Limited All rights reserved

    Transformation Of Human Ovarian Surface Epithelial Cells By Krüppel-Like Factor 8

    No full text
    We have previously demonstrated that Krüppel-like factor 8 (KLF8) participates in oncogenic transformation of mouse fibroblasts and is highly overexpressed in human ovarian cancer. In this work, we first correlated KLF8 overexpression with the aggressiveness of ovarian patient tumors and then tested if KLF8 could transform human ovarian epithelial cells. Using the immortalized non-tumorigenic human ovarian surface epithelial cell line T80 and retroviral infection, we generated cell lines that constitutively overexpress KLF8 alone or its combination with the known ovarian oncogenes c-Myc, Stat3c and/or Akt and examined the cell lines for anchorage-independent growth and tumorigenesis. The soft agar clonogenic assay showed that T80/KLF8 cells formed significantly more colonies than the mock cells. Interestingly, the cells expressing both KLF8 and c-Myc formed the largest amounts of colonies, greater than the sum of colonies formed by the cells expressing KLF8 and c-Myc alone. These results suggested that KLF8 might be a weak oncogene that works cooperatively with c-Myc to transform ovarian cells. Surprisingly, overexpression of KLF8 alone was sufficient to induce tumorigenesis in nude mice resulting in short lifespan irrespective of whether the T80/KLF8 cells were injected subcutaneously, intraperitoneally or orthotopically into the ovarian bursa. Histopathological studies confirmed that the T80/KLF8 tumors were characteristic of human serous ovarian carcinomas. Comparative expression profiling and functional studies identified the cell cycle regulators cyclin D1 and USP44 as primary KLF8 targets and effectors for the T80 transformation. Overall, we identified KLF8 overexpression as an important factor in human ovarian carcinoma pathogenesis. © 2014 Macmillan Publishers Limited
    corecore