28 research outputs found

    Kahler potentials for the MSSM inflation and the spectral index

    Full text link
    Recently it has been argued that some of the fine-tuning problems of the MSSM inflation associated with the existence of a saddle point along a flat direction may be solved naturally in a class of supergravity models. Here we extend the analysis and show that the constraints on the Kahler potentials in these models are considerably relaxed when the location of the saddle point is treated as a free variable. We also examine the effect of supergravity corrections on inflationary predictions and find that they can slightly alter the value of the spectral index. As an example, for flat direction field values ϕˉ0=1×104MP|\bar{\phi}_0|=1\times10^{-4}M_P we find n0.92...0.94n\sim0.92 ... 0.94 while the prediction of the MSSM inflation without any corrections is n0.92n\sim0.92.Comment: 13 pages, one figure. Typos corrected and a reference adde

    Charged Lepton Electric Dipole Moments from TeV Scale Right-handed Neutrinos

    Full text link
    We study the connection between charged lepton electric dipole moments, dld_l (l=e,μ,τ)(l=e,\mu,\tau), and seesaw neutrino mass generation in a simple two Higgs doublet extension of the Standard Model plus three right-handed neutrinos (RHN) NaN_a, a=1,2,3a=1,2,3. For RHN with hierarchical masses and at least one with mass in the 10 TeV range we obtain the upper bounds of de<9×1030|d_e|< 9\times 10^{-30} e-cm and dμ<2×1026|d_{\mu}|<2 \times 10^{-26} e-cm. Our scenario favors the normal mass hierarchy for the light neutrinos. We also calculated the cross section for e^-e^- \ra W^- W^- in a high luminosity collider with constraints from neutrinoless double beta decay of nuclei included. Among the rare muon decay experiments we find that \mu\ra e\gamma is most sensitive and the upper limit is <8×1013<8\times 10^{-13}.Comment: references added, typos correcte

    Detailed Analysis of Proton Decay Rate in the Minimal Supersymmetric SO(10) Model

    Full text link
    We consider the minimal supersymmetric SO(10) model, where only one {\bf 10} and one 126ˉ\bar{\bf 126} Higgs multiplets have Yukawa couplings with matter multiplets. This model has the high predictive power for the Yukawa coupling matrices consistent with the experimental data of the charged fermion mass matrices, and all the Yukawa coupling matrices are completely determined once a few parameters in the model are fixed. This feature is essential for definite predictions to the proton decay rate through the dimension five operators. We analyze the proton decay rate for the dominant decay modes pK+νˉp \to K^{+} \bar{\nu} by including as many free parameters as possible and varying them. There are two free parameters in the Yukawa sector, while five in the Higgsino sector. It is found that an allowed region exists when the free parameters in the Higgs sector are tuned so as to cancel the proton decay amplitude. The resultant proton lifetime is proportional to 1/tan2β1/\tan^2 \beta and the allowed region eventually disappears as tanβ\tan \beta becomes large.Comment: 15 pages, 3 figures; the version to appear in JHE

    Revisiting Leptogenesis in a SUSY SU(5) x T' Model of Flavour

    Get PDF
    We investigate the generation of the baryon asymmetry of the Universe within a SUSY SU(5) x T' model of flavour, which gives rise to realistic masses and mixing patterns for quarks and leptons. The model employs the see-saw mechanism for generation of the light neutrino masses and the baryon asymmetry is produced via leptogenesis. We perform detailed calculations of both the CP violating lepton asymmetries, originating from the decays of the heavy Majorana neutrinos operative in the see-saw mechanism, and of the efficiency factors which account for the lepton asymmetry wash-out processes in the Early Universe. The latter are calculated by solving numerically the system of Boltzmann equations describing the generation and the evolution of the lepton asymmetries. The baryon asymmetry in the model considered is proportional to the J_{CP} factor, which determines the magnitude of CP violation effects in the oscillations of flavour neutrinos. The leptogenesis scale can be sufficiently low, allowing to avoid the potential gravitino problem.Comment: 14 pages, 1 figure; published versio

    Astrophysical and Cosmological Implications of Large Volume String Compactifications

    Full text link
    We study the spectrum, couplings and cosmological and astrophysical implications of the moduli fields for the class of Calabi-Yau IIB string compactifications for which moduli stabilisation leads to an exponentially large volume V ~ 10^{15} l_s^6 and an intermediate string scale m_s ~ 10^{11}GeV, with TeV-scale observable supersymmetry breaking. All K\"ahler moduli except for the overall volume are heavier than the susy breaking scale, with m ~ ln(M_P/m_{3/2}) m_{3/2} ~ (\ln(M_P/m_{3/2}))^2 m_{susy} ~ 500 TeV and, contrary to standard expectations, have matter couplings suppressed only by the string scale rather than the Planck scale. These decay to matter early in the history of the universe, with a reheat temperature T ~ 10^7 GeV, and are free from the cosmological moduli problem (CMP). The heavy moduli have a branching ratio to gravitino pairs of 10^{-30} and do not suffer from the gravitino overproduction problem. The overall volume modulus is a distinctive feature of these models and is an M_{planck}-coupled scalar of mass m ~ 1 MeV and subject to the CMP. A period of thermal inflation can help relax this problem. This field has a lifetime ~ 10^{24}s and can contribute to dark matter. It may be detected through its decays to 2\gamma or e^+e^-. If accessible the e^+e^- decay mode dominates, with Br(\chi \to 2 \gamma) suppressed by a factor (ln(M_P/m_{3/2}))^2. We consider the potential for detection of this field through different astrophysical sources and find that the observed gamma-ray background constrains \Omega_{\chi} <~ 10^{-4}. The decays of this field may generate the 511 keV emission line from the galactic centre observed by INTEGRAL/SPI.Comment: 31 pages, 2 figures; v2. refs adde

    Energy Transfer in Multi Field Inflation and Cosmological Perturbations

    Full text link
    In cascade inflation and some other string inflation models, collisions of mobile branes with other branes or orbifold planes occur and lead to interesting cosmological signatures. The fundamental M/string-theory description of these collisions is still lacking but it is clear that the inflaton looses part of its energy to some form of brane matter, e.g. a component of tensionless strings. In the absence of a fundamental description, we assume a general barotropic fluid on the brane, which absorbs part of the inflaton's energy. The fluid is modeled by a scalar with a suitable exponential potential to arrive at a full-fledged field theory model. We study numerically the impact of the energy transfer from the inflaton to the scalar on curvature and isocurvature perturbations and demonstrate explicitly that the curvature power spectrum gets modulated by oscillations which damp away toward smaller scales. Even though, the contribution of isocurvature perturbations decays toward the end of inflation, they induce curvature perturbations on scales that exit the horizon before the collision. We consider cases where the scalar behaves like radiation, matter or a web of cosmic strings and discuss the differences in the resulting power spectra.Comment: v1: 25 pages, 7 figures; v2: references added;v3: typo corrected, accepted for publication to JCA

    Lectures on Cosmic Inflation and its Potential Stringy Realizations

    Full text link
    These notes present a brief introduction to Hot Big Bang cosmology and Cosmic Inflation, together with a selection of some recent attempts to embed inflation into string theory. They provide a partial description of lectures presented in courses at Dubrovnik in August 2006, at CERN in January 2007 and at Cargese in August 2007. They are aimed at graduate students with a working knowledge of quantum field theory, but who are unfamiliar with the details of cosmology or of string theory.Comment: 68 pages, lectures given at Dubrovnik, Aug 2006; CERN, January 2007; and Cargese, Aug 200

    An international reproducibility study validating quantitative determination of ERBB2, ESR1, PGR, and MKI67 mRNA in breast cancer using MammaTyper (R)

    Get PDF
    Background: Accurate determination of the predictive markers human epidermal growth factor receptor 2 (HER2/ERBB2), estrogen receptor (ER/ESR1), progesterone receptor (PgR/PGR), and marker of proliferation Ki67 (MKI67) is indispensable for therapeutic decision making in early breast cancer. In this multicenter prospective study, we addressed the issue of inter- and intrasite reproducibility using the recently developed reverse transcription-quantitative real-time polymerase chain reaction-based MammaTyper (R) test. Methods: Ten international pathology institutions participated in this study and determined messenger RNA expression levels of ERBB2, ESR1, PGR, and MKI67 in both centrally and locally extracted RNA from formalin-fixed, paraffin-embedded breast cancer specimens with the MammaTyper (R) test. Samples were measured repeatedly on different days within the local laboratories, and reproducibility was assessed by means of variance component analysis, Fleiss' kappa statistics, and interclass correlation coefficients (ICCs). Results: Total variations in measurements of centrally and locally prepared RNA extracts were comparable; therefore, statistical analyses were performed on the complete dataset. Intersite reproducibility showed total SDs between 0.21 and 0.44 for the quantitative single-marker assessments, resulting in ICC values of 0.980-0.998, demonstrating excellent agreement of quantitative measurements. Also, the reproducibility of binary single-marker results (positive/negative), as well as the molecular subtype agreement, was almost perfect with kappa values ranging from 0.90 to 1.00. Conclusions: On the basis of these data, the MammaTyper (R) has the potential to substantially improve the current standards of breast cancer diagnostics by providing a highly precise and reproducible quantitative assessment of the established breast cancer biomarkers and molecular subtypes in a decentralized workup.Peer reviewe
    corecore