2,334 research outputs found
Detection of the spin character of Fe(001) surface states by scanning tunneling microscopy: A theoretical proposal
We consider the magnetic structure on the Fe(001) surface and theoretically
study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM).
We show that minority-spin surface states induce a strong bias dependence of
the tunneling differential conductance which largely depends on the orientation
of the magnetization in the SP-STM tip relative to the easy magnetization axis
in the Fe(001) surface. We propose to use this effect in order to determine the
spin character of the Fe(001) surface states. This technique can be applied
also to other magnetic surfaces in which surface states are observed.Comment: 5 pages, 4 figure
Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption
Background/Objectives:
Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods:
Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. Results:
VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (PP\u3e0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P\u3c0.05). Conclusions:
Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption
Thermopower of a superconducting single-electron transistor
We present a linear-response theory for the thermopower of a single-electron
transistor consisting of a superconducting island weakly coupled to two
normal-conducting leads (NSN SET). The thermopower shows oscillations with the
same periodicity as the conductance and is rather sensitive to the size of the
superconducting gap. In particular, the previously studied sawtooth-like shape
of the thermopower for a normal-conducting single-electron device is
qualitatively changed even for small gap energies.Comment: 9 pages, 3 figure
A unified first-principles study of Gilbert damping, spin-flip diffusion and resistivity in transition metal alloys
Using a formulation of first-principles scattering theory that includes
disorder and spin-orbit coupling on an equal footing, we calculate the
resistivity , spin flip diffusion length and the Gilbert damping
parameter for NiFe substitutional alloys as a function of
. For the technologically important NiFe alloy, permalloy, we
calculate values of Ohm-cm, nm,
and compared to experimental low-temperature values
in the range Ohm-cm for , nm for , and
for indicating that the theoretical formalism captures
the most important contributions to these parameters.Comment: Published in Physical Review Letter
Conductance calculations for quantum wires and interfaces: mode matching and Green functions
Landauer's formula relates the conductance of a quantum wire or interface to
transmission probabilities. Total transmission probabilities are frequently
calculated using Green function techniques and an expression first derived by
Caroli. Alternatively, partial transmission probabilities can be calculated
from the scattering wave functions that are obtained by matching the wave
functions in the scattering region to the Bloch modes of ideal bulk leads. An
elegant technique for doing this, formulated originally by Ando, is here
generalized to any Hamiltonian that can be represented in tight-binding form. A
more compact expression for the transmission matrix elements is derived and it
is shown how all the Green function results can be derived from the mode
matching technique. We illustrate this for a simple model which can be studied
analytically, and for an Fe|vacuum|Fe tunnel junction which we study using
first-principles calculations.Comment: 14 pages, 5 figure
First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder
The effect of the electron-phonon interaction on magnetization relaxation is
studied within the framework of first-principles scattering theory for Fe, Co,
and Ni by displacing atoms in the scattering region randomly with a thermal
distribution. This "frozen thermal lattice disorder" approach reproduces the
non-monotonic damping behaviour observed in ferromagnetic resonance
measurements and yields reasonable quantitative agreement between calculated
and experimental values. It can be readily applied to alloys and easily
extended by determining the atomic displacements from ab initio phonon spectra
Spin-dependent Transparency of Ferromagnet/Superconductor Interfaces
Because the physical interpretation of the spin-polarization of a ferromagnet
determined by point-contact Andreev reflection (PCAR) is non-trivial, we have
carried out parameter-free calculations of PCAR spectra based upon a
scattering-theory formulation of Andreev reflection generalized to
spin-polarized systems and a tight-binding linear muffin tin orbital method for
calculating the corresponding scattering matrices. PCAR is found to measure the
spin-dependent interface transparency rather than the bulk polarization of the
ferromagnet which is strongly overestimated by free electron model fitting.Comment: 4 pages, 1figure. submitte
Writing and Reading antiferromagnetic MnAu: N\'eel spin-orbit torques and large anisotropic magnetoresistance
Antiferromagnets are magnetically ordered materials which exhibit no net
moment and thus are insensitive to magnetic fields. Antiferromagnetic
spintronics aims to take advantage of this insensitivity for enhanced
stability, while at the same time active manipulation up to the natural THz
dynamic speeds of antiferromagnets is possible, thus combining exceptional
storage density and ultra-fast switching. However, the active manipulation and
read-out of the N\'eel vector (staggered moment) orientation is challenging.
Recent predictions have opened up a path based on a new spin-orbit torque,
which couples directly to the N\'eel order parameter. This N\'eel spin-orbit
torque was first experimentally demonstrated in a pioneering work using
semimetallic CuMnAs. Here we demonstrate for MnAu, a good conductor with a
high ordering temperature suitable for applications, reliable and reproducible
switching using current pulses and readout by magnetoresistance measurements.
The symmetry of the torques agrees with theoretical predictions and a large
read-out magnetoresistance effect of more than ~ is reproduced by
ab initio transport calculations.Comment: 5 pages, 4 figure
- …
