2,334 research outputs found

    Detection of the spin character of Fe(001) surface states by scanning tunneling microscopy: A theoretical proposal

    Full text link
    We consider the magnetic structure on the Fe(001) surface and theoretically study the scanning tunneling spectroscopy using a spin-polarized tip (SP-STM). We show that minority-spin surface states induce a strong bias dependence of the tunneling differential conductance which largely depends on the orientation of the magnetization in the SP-STM tip relative to the easy magnetization axis in the Fe(001) surface. We propose to use this effect in order to determine the spin character of the Fe(001) surface states. This technique can be applied also to other magnetic surfaces in which surface states are observed.Comment: 5 pages, 4 figure

    Metabolic Effects of Bariatric Surgery in Mouse Models of Circadian Disruption

    Get PDF
    Background/Objectives: Mounting evidence supports a link between circadian disruption and metabolic disease. Humans with circadian disruption (for example, night-shift workers) have an increased risk of obesity and cardiometabolic diseases compared with the non-disrupted population. However, it is unclear whether the obesity and obesity-related disorders associated with circadian disruption respond to therapeutic treatments as well as individuals with other types of obesity. Subjects/Methods: Here, we test the effectiveness of the commonly used bariatric surgical procedure, Vertical Sleeve Gastrectomy (VSG), in mouse models of genetic and environmental circadian disruption. Results: VSG led to a reduction in body weight and fat mass in both ClockΔ19 mutant and constant-light mouse models (PP\u3e0.05). Within circadian-disrupted models, VSG also led to improved glucose tolerance and lipid handling (P\u3c0.05). Conclusions: Together these data demonstrate that VSG is an effective treatment for the obesity associated with circadian disruption, and that the potent effects of bariatric surgery are orthogonal to circadian biology. However, as the effects of bariatric surgery are independent of circadian disruption, VSG cannot be considered a cure for circadian disruption. These data have important implications for circadian-disrupted obese patients. Moreover, these results reveal new information about the metabolic pathways governing the effects of bariatric surgery as well as of circadian disruption

    Thermopower of a superconducting single-electron transistor

    Get PDF
    We present a linear-response theory for the thermopower of a single-electron transistor consisting of a superconducting island weakly coupled to two normal-conducting leads (NSN SET). The thermopower shows oscillations with the same periodicity as the conductance and is rather sensitive to the size of the superconducting gap. In particular, the previously studied sawtooth-like shape of the thermopower for a normal-conducting single-electron device is qualitatively changed even for small gap energies.Comment: 9 pages, 3 figure

    A unified first-principles study of Gilbert damping, spin-flip diffusion and resistivity in transition metal alloys

    Get PDF
    Using a formulation of first-principles scattering theory that includes disorder and spin-orbit coupling on an equal footing, we calculate the resistivity ρ\rho, spin flip diffusion length lsfl_{sf} and the Gilbert damping parameter α\alpha for Ni1x_{1-x}Fex_x substitutional alloys as a function of xx. For the technologically important Ni80_{80}Fe20_{20} alloy, permalloy, we calculate values of ρ=3.5±0.15\rho = 3.5 \pm 0.15 μ\muOhm-cm, lsf=5.5±0.3l_{sf}=5.5 \pm 0.3 nm, and α=0.0046±0.0001\alpha= 0.0046 \pm 0.0001 compared to experimental low-temperature values in the range 4.24.84.2-4.8 μ\muOhm-cm for ρ\rho, 5.06.05.0-6.0 nm for lsfl_{sf}, and 0.0040.0130.004-0.013 for α\alpha indicating that the theoretical formalism captures the most important contributions to these parameters.Comment: Published in Physical Review Letter

    Conductance calculations for quantum wires and interfaces: mode matching and Green functions

    Get PDF
    Landauer's formula relates the conductance of a quantum wire or interface to transmission probabilities. Total transmission probabilities are frequently calculated using Green function techniques and an expression first derived by Caroli. Alternatively, partial transmission probabilities can be calculated from the scattering wave functions that are obtained by matching the wave functions in the scattering region to the Bloch modes of ideal bulk leads. An elegant technique for doing this, formulated originally by Ando, is here generalized to any Hamiltonian that can be represented in tight-binding form. A more compact expression for the transmission matrix elements is derived and it is shown how all the Green function results can be derived from the mode matching technique. We illustrate this for a simple model which can be studied analytically, and for an Fe|vacuum|Fe tunnel junction which we study using first-principles calculations.Comment: 14 pages, 5 figure

    First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorder

    Full text link
    The effect of the electron-phonon interaction on magnetization relaxation is studied within the framework of first-principles scattering theory for Fe, Co, and Ni by displacing atoms in the scattering region randomly with a thermal distribution. This "frozen thermal lattice disorder" approach reproduces the non-monotonic damping behaviour observed in ferromagnetic resonance measurements and yields reasonable quantitative agreement between calculated and experimental values. It can be readily applied to alloys and easily extended by determining the atomic displacements from ab initio phonon spectra

    Spin-dependent Transparency of Ferromagnet/Superconductor Interfaces

    Get PDF
    Because the physical interpretation of the spin-polarization of a ferromagnet determined by point-contact Andreev reflection (PCAR) is non-trivial, we have carried out parameter-free calculations of PCAR spectra based upon a scattering-theory formulation of Andreev reflection generalized to spin-polarized systems and a tight-binding linear muffin tin orbital method for calculating the corresponding scattering matrices. PCAR is found to measure the spin-dependent interface transparency rather than the bulk polarization of the ferromagnet which is strongly overestimated by free electron model fitting.Comment: 4 pages, 1figure. submitte

    Writing and Reading antiferromagnetic Mn2_2Au: N\'eel spin-orbit torques and large anisotropic magnetoresistance

    Get PDF
    Antiferromagnets are magnetically ordered materials which exhibit no net moment and thus are insensitive to magnetic fields. Antiferromagnetic spintronics aims to take advantage of this insensitivity for enhanced stability, while at the same time active manipulation up to the natural THz dynamic speeds of antiferromagnets is possible, thus combining exceptional storage density and ultra-fast switching. However, the active manipulation and read-out of the N\'eel vector (staggered moment) orientation is challenging. Recent predictions have opened up a path based on a new spin-orbit torque, which couples directly to the N\'eel order parameter. This N\'eel spin-orbit torque was first experimentally demonstrated in a pioneering work using semimetallic CuMnAs. Here we demonstrate for Mn2_2Au, a good conductor with a high ordering temperature suitable for applications, reliable and reproducible switching using current pulses and readout by magnetoresistance measurements. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than 6\simeq 6~%\% is reproduced by ab initio transport calculations.Comment: 5 pages, 4 figure
    corecore