5 research outputs found

    Growth and setting of gas bubbles in a viscoelastic matrix imaged by X-ray microtomography: the evolution of cellular structures in fermenting wheat flour dough

    No full text
    International audienceX-ray tomography is a relevant technique for the dynamic follow-up of gas bubbles in an opaque viscoelastic matrix, especially using image analysis. It has been applied here to pieces of fermenting wheat flour dough of various compositions, at two different voxel sizes (15 and 5 mm). The resulting evolution of the main cellular features shows that the creation of cellular structures follows two regimes that are defined by a characteristic time of connectivity, t(c) [30 and 80 min]: first (t = t(c)) they become connected since the percolation of the gas phase is limited by liquid films. During the first regime, bubbles can be tracked and the local strain rate can be measured. Its values (10(-4)-5 x 10(-4) s(-1)) are in agreement with those computed from dough viscosity and internal gas pressure, both of which depend on the composition. For higher porosity, P = 0.64 in our case, and thus occurring in the second regime, different cellular structures are obtained and XRT images show deformed gas cells that display complex shapes. The comparison of these images with confocal laser scanning microscopy images suggests the presence of liquid films that separate these cells. The dough can therefore be seen as a three-phase medium: viscoelastic matrix/gas cell/liquid phase. The contributions of the different levels of matter organization can be integrated by defining a capillary number (C-a(*) = 0.1-1) that makes it possible to predict the macroscopic dough behavior

    Integration of basic knowledge models for the simulation of cereal foods processing and properties

    No full text
    International audienceCereal processing (breadmaking, extrusion, pasting, etc.) covers a range of mechanisms that, despite their diversity, can be often reduced to a succession of two core phenomena: (1) the transition from a divided solid medium (the flour) to a continuous one through hydration, mechanical, biochemical, and thermal actions and (2) the expansion of a continuous matrix toward a porous structure as a result of the growth of bubble nuclei either by yeast fermentation or by water vaporization after a sudden pressure drop. Modeling them is critical for the domain, but can be quite challenging to address with mechanistic approaches relying on partial differential equations. In this chapter we present alternative approaches through basic knowledge models (BKM) that integrate scientific and expert knowledge, and possess operational interest for domain specialists. Using these BKMs, simulations of two cereal foods processes, extrusion and breadmaking, are provided by focusing on the two core phenomena. To support the use by non-specialists, these BKMs are implemented as computer tools, a Knowledge-Based System developed for the modeling of the flour mixing operation or Ludovic®, a simulation software for twin screw extrusion. They can be applied to a wide domain of compositions, provided that the data on product rheological properties are available. Finally, it is stated that the use of such systems can help food engineers to design cereal food products and predict their texture properties
    corecore