1,734 research outputs found

    Inflationary preheating and primordial black holes

    Get PDF
    Preheating after inflation may over-produce primordial black holes (PBH's) in many regions of parameter space. As an example we study two-field models with a massless self-interacting inflaton, taking into account second order field and metric backreaction effects as spatial averages. We find that a complex quilt of parameter regions above the Gaussian PBH over-production threshold emerges due to the enhancement of curvature perturbations on all scales. It should be possible to constrain realistic models of inflation through PBH over-production although many issues, such as rescattering and non-Gaussianity, remain unsolved or unexplored.Comment: 7 pages, 6 figures. Fig 6 is added to show the weak dependence of the mass variance on the initial conditio

    Chaotic dynamics in preheating after inflation

    Full text link
    We study chaotic dynamics in preheating after inflation in which an inflaton ϕ\phi is coupled to another scalar field χ\chi through an interaction (1/2)g2ϕ2χ2(1/2)g^2\phi^2\chi^2. We first estimate the size of the quasi-homogeneous field χ\chi at the beginning of reheating for large-field inflaton potentials V(ϕ)=V0ϕnV(\phi)=V_0\phi^n by evaluating the amplitude of the χ\chi fluctuations on scales larger than the Hubble radius at the end of inflation. Parametric excitations of the field χ\chi during preheating can give rise to chaos between two dynamical scalar fields. For the quartic potential (n=4n=4, V0=λ/4V_0=\lambda/4) chaos actually occurs for g2/λ<O(10)g^2/\lambda <{\cal O}(10) in a linear regime before which the backreaction of created particles becomes important. This analysis is supported by several different criteria for the existence of chaos. For the quadratic potential (n=2n=2) the signature of chaos is not found by the time at which the backreaction begins to work, similar to the case of the quartic potential with g2/λ1g^2/\lambda \gg 1.Comment: 12 pages, 10 figures, Version to appear in Classical and Quantum Gravit

    Dynamics of assisted quintessence

    Get PDF
    We explore the dynamics of assisted quintessence, where more than one scalar field is present with the same potential. For potentials with tracking solutions, the fields naturally approach the same values—in the context of inflation this leads to the assisted inflation phenomenon where several fields can cooperate to drive a period of inflation though none is able to individually. For exponential potentials, we study the fixed points and their stability confirming results already in the literature, and then carry out a numerical analysis to show how assisted quintessence is realized. For inverse power-law potentials, we find by contrast that there is no assisted behavior—indeed those are the unique (monotonic) potentials where several fields together behave just as a single field in the same potential. More generally, we provide an algorithm for generating a single-field potential giving equivalent dynamics to multifield assisted quintessence

    Cosmology of a covariant Galileon field

    Full text link
    We study the cosmology of a covariant scalar field respecting a Galilean symmetry in flat space-time. We show the existence of a tracker solution that finally approaches a de Sitter fixed point responsible for cosmic acceleration today. The viable region of model parameters is clarified by deriving conditions under which ghosts and Laplacian instabilities of scalar and tensor perturbations are absent. The field equation of state exhibits a peculiar phantom-like behavior along the tracker, which allows a possibility to observationally distinguish the Galileon gravity from the Lambda-CDM model.Comment: 4 pages, uses RevTe

    Testing for double inflation with WMAP

    Get PDF
    With the WMAP data we can now begin to test realistic models of inflation involving multiple scalar fields. These naturally lead to correlated adiabatic and isocurvature (entropy) perturbations with a running spectral index. We present the first full (9 parameter) likelihood analysis of double inflation with WMAP data and find that despite the extra freedom, supersymmetric hybrid potentials are strongly constrained with less than 7% correlated isocurvature component allowed when standard priors are imposed on the cosomological parameters. As a result we also find that Akaike & Bayesian model selection criteria rather strongly prefer single-field inflation, just as equivalent analysis prefers a cosmological constant over dynamical dark energy in the late universe. It appears that simplicity is the best guide to our universe.Comment: 7 pages, 6 figure

    Fermion production from preheating-amplified metric perturbations

    Get PDF
    We study gravitational creation of light fermions in the presence of classical scalar metric perturbations about a flat Friedmann-Lemaitre- Robertson-Walker (FLRW) background. These perturbations can be large during preheating, breaking the conformal flatness of the background spacetime. We compute numerically the total number of particles generated by the modes of the metric perturbations which have grown sufficiently to become classical. In the absence of inhomogeneities massless fermions are not gravitationally produced, and then this effect may be relevant for abundance estimates of light gravitational relics.Comment: 17 pages, 7 figures, accepted for publication in Nuclear Physics

    Power-law inflation with a nonminimally coupled scalar field

    Get PDF
    We consider the dynamics of power-law inflation with a nonminimally coupled scalar field ϕ\phi. It is well known that multiple scalar fields with exponential potentials V(ϕ)=V0exp(16π/pmpl2ϕ)V(\phi)=V_0 {\rm exp}(-\sqrt{16\pi/p m_{\rm pl}^2} \phi) lead to an inflationary solution even if the each scalar field is not capable to sustain inflation. In this paper, we show that inflation can be assisted even in the one-field case by the effect of nonminimal coupling. When ξ\xi is positive, since an effective potential which arises by a conformal transformation becomes flatter compared with the case of ξ=0\xi=0 for ϕ>0\phi>0, we have an inflationary solution even when the universe evolves as non-inflationary in the minimally coupled case. For the negative ξ\xi, the assisted inflation can take place when ϕ\phi evolves in the region of ϕ<0\phi<0 \.Comment: 12 pages, 6 figures, to appear in Phys. Rev.

    Generalized Galileon cosmology

    Full text link
    We study the cosmology of a generalized Galileon field ϕ\phi with five covariant Lagrangians in which ϕ\phi is replaced by general scalar functions fi(ϕ)f_{i}(\phi) (i=1,...,5). For these theories, the equations of motion remain at second-order in time derivatives. We restrict the functional forms of fi(ϕ)f_{i}(\phi) from the demand to obtain de Sitter solutions responsible for dark energy. There are two possible choices for power-law functions fi(ϕ)f_{i}(\phi), depending on whether the coupling F(ϕ)F(\phi) with the Ricci scalar RR is independent of ϕ\phi or depends on ϕ\phi. The former corresponds to the covariant Galileon theory that respects the Galilean symmetry in the Minkowski space-time. For generalized Galileon theories we derive the conditions for the avoidance of ghosts and Laplacian instabilities associated with scalar and tensor perturbations as well as the condition for the stability of de Sitter solutions. We also carry out detailed analytic and numerical study for the cosmological dynamics in those theories.Comment: 24 pages, 10 figures, version to appear in Physical Review

    Observational signatures of f(R) dark energy models that satisfy cosmological and local gravity constraints

    Full text link
    We discuss observational consequences of f(R) dark energy scenarios that satisfy local gravity constraints (LGC) as well as conditions of the cosmological viability. The model we study is given by m(r)=C(-r-1)^p (C>0, p>1) with m=Rf_{,RR}/f_{,R} and r=-Rf_{,R}/f, which cover viable f(R) models proposed so far in a high-curvature region designed to be compatible with LGC. The equation of state of dark energy exhibits a divergence at a redshift z_c that can be as close as a few while satisfying sound horizon constraints of Cosmic Microwave Background (CMB). We study the evolution of matter density perturbations in details and place constraints on model parameters from the difference of spectral indices of power spectra between CMB and galaxy clustering. The models with p>5 can be consistent with those observational constraints as well as LGC. We also discuss the evolution of perturbations in the Ricci scalar R and show that an oscillating mode (scalaron) can easily dominate over a matter-induced mode as we go back to the past. This violates the stability of cosmological solutions, thus posing a problem about how the over-production of scalarons should be avoided in the early universe.Comment: 13 pages, 7 figures, version to appear in Physical Review

    Dynamics of inflationary cosmology in TVSD model

    Get PDF
    Within the framework of a model Universe with time variable space dimensions (TVSD), known as decrumpling or TVSD model, we study TVSD chaotic inflation and obtain dynamics of the inflaton, scale factor and spatial dimension. We also study the quantum fluctuations of the inflaton field and obtain the spectral index and its running in this model. Two classes of examples have been studied and comparisons made with the standard slow-roll formulae. We compare our results with the recent Wilkinson Microwave Anisotropy Probe (WMAP) data.Comment: 18 pages, 3 figures, accepted in Mod. Phys. Lett.
    corecore