11 research outputs found

    Plasma-assisted synthesis of TiO2 nanorods by gliding arc discharge processing at atmospheric pressure for photocatalytic applications

    No full text
    The present study explores a new method of synthesis of TiO2 nano-particles in an aqueous medium from TiCl3 precursor by non-thermal plasma in humid air as feeding gas obtained at atmospheric pressure. The precursor solution, TiCl3 is oxidized by strongly reactive species generated by gliding arc plasma (HO· = 2.85 V/SHE) to produce titanium oxide powders. The synthesized powder was characterised by X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, FTIR spectroscopy, nitrogen physisorption, and UV–Vis spectroscopy. The results obtained showed that the material consists of rod-shaped nanoparticles of rutile and anatase phases. The presence of TiO2 phases was confirmed by FTIR spectrum and textural analyses showed that the material is mesoporous with specific surface area of 158 m2 g−1. UV–Visible spectrum of the plasma-synthesized TiO2 sample showed that it absorbs in the UV–A region leading to effective use as a photocatalyst under visible light

    Plasma chemical functionalisation of a Cameroonian kaolinite clay for a greater hydrophilicity

    No full text
    A Cameroonian kaolinite powder was treated with gliding arc plasma in order to increase the amount of hydroxyl functional groups present on its external surfaces. The functional changes that occurred were monitored by Fourier transform infrared spectroscopy. The crystalline changes were followed by the X-ray diffraction. The ionisation effect, acid effect, and water solubility of the treated samples were also evaluated. Results showed that there is breaking of the bonds in the Si–O–Si and Si–O–Al groups, followed by the formation of new aluminol (Al–OH) and silanol (Si–OH) groups at the external surface of kaolinite after exposing the clay to the gliding arc plasma. The increase in hydroxyl groups on the surface of kaolinite leads to the increase of its hydrophilicity. Moreover, new charges appear on its surfaces and no significant change in crystallinity has occurred. This study shows that clays in powder form being can effectively be functionalised by gliding arc plasma in spatial post discharge processing mode. Knowing that the treatment in spatial post discharge offers the possibility to process large amounts of clay, this work is of great interest to the industry

    Gliding Arc Plasma Synthesis of MnO2 Nanorods for the Plasma-Catalytic Bleaching of Azoïc Amaranth Red Dye

    No full text
    Manganese (IV) oxide (MnO2) nanoparticles were synthesized, via a plasma-chemical route by using a gliding arc discharge at atmospheric pressure. α-MnO2 nanorods were obtained from the chemical reduction of KMnO4. The synthesis yield was 96.8% after 4.5 min of exposure of the solution to the plasma. Further increase of the exposure time induced a decrease of MnO2 yield because of its reductive transformation into Mn2+ ions. Particles were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier Transform Infrared spectroscopy, and nitrogen physisorption. The plasma-catalytic properties of the synthesized material were tested in the bleaching of amaranth red (AR). AR bleaching efficiencies of 17 and 44% were respectively obtained when the plasma and plasma-catalyst processes were applied for 30 min with initial pH 10. The influence of the initial pH, and catalyst concentration were investigated: the AR bleaching efficiency increased linearly with the catalyst concentration and increased markedly when the pH of the solution decreased
    corecore