167 research outputs found

    Trends in Nanophotonics-Enabled Optofluidic Biosensors

    Get PDF
    Optofluidic sensors integrate photonics with micro/nanofluidics to realize compact devices for the label-free detection of molecules and the real-time monitoring of dynamic surface binding events with high specificity, ultrahigh sensitivity, low detection limit, and multiplexing capability. Nanophotonic structures composed of metallic and/or dielectric building blocks excel at focusing light into ultrasmall volumes, creating enhanced electromagnetic near-fields ideal for amplifying the molecular signal readout. Furthermore, fluidic control on small length scales enables precise tailoring of the spatial overlap between the electromagnetic hotspots and the analytes, boosting light-matter interaction, and can be utilized to integrate advanced functionalities for the pre-treatment of samples in real-world-use cases, such as purification, separation, or dilution. In this review, the authors highlight current trends in nanophotonics-enabled optofluidic biosensors for applications in the life sciences while providing a detailed perspective on how these approaches can synergistically amplify the optical signal readout and achieve real-time dynamic monitoring, which is crucial in biomedical assays and clinical diagnostics

    Metallic and All-Dielectric Metasurfaces Sustaining Displacement-Mediated Bound States in the Continuum

    Full text link
    Bound states in the continuum (BICs) are localized electromagnetic modes within the continuous spectrum of radiating waves. Due to their infinite lifetimes without radiation losses, BICs are driving research directions in lasing, non-linear optical processes, and sensing. However, conventional methods for converting BICs into leaky resonances, or quasi-BICs, with high-quality factors typically rely on breaking the in-plane inversion symmetry of the metasurface and often result in resonances that are strongly dependent on the angle of the incident light, making them unsuitable for many practical applications. Here, we numerically analyze and experimentally demonstrate an emerging class of BIC-driven metasurfaces, where the coupling to the far field is controlled by the displacement of individual resonators. In particular, we investigate both all-dielectric and metallic as well as positive and inverse displacement-mediated metasurfaces sustaining angular-robust quasi-BICs in the mid-infrared spectral region. We explore their behavior with changes in the incidence angle of illumination and experimentally show their superior performance compared to two conventional alternatives: silicon-based tilted ellipses and cylindrical nanoholes in gold. We anticipate our findings to open exciting perspectives for bio-sensing, conformal optical devices, and photonic devices using focused light.Comment: 27 pages, 7 figures, 1 tabl

    Multi-band metasurface-driven surface-enhanced infrared absorption spectroscopy for improved characterization of in-situ electrochemical reactions

    Full text link
    Surface-enhanced spectroscopy techniques are the method-of-choice to characterize adsorbed intermediates occurring during electrochemical reactions, which are crucial in realizing a green sustainable future. Characterizing species with low coverages or short lifetimes have so far been limited by low signal enhancement. Recently, metasurface-driven surface-enhanced infrared absorption spectroscopy (SEIRAS) has been pioneered as a promising narrowband technology to study single vibrational modes of electrochemical interfaces during CO oxidation. However, many reactions involve several species or configurations of adsorption that need to be monitored simultaneously requiring reproducible and broadband sensing platforms to provide a clear understanding of the underlying electrochemical processes. Here, we experimentally realize multi-band metasurface-driven SEIRAS for the in-situ study of electrochemical CO2 reduction on a Pt surface. We develop an easily reproducible and spectrally-tunable platinum nano-slot metasurface. Two CO adsorption configurations at 2030 cm-1 and 1840 cm-1 are locally enhanced as a proof of concept that can be extended to more vibrational bands. Our platform provides a 41-fold enhancement in the detection of characteristic absorption signals compared to conventional broadband electrochemically roughened platinum films. A straightforward methodology is outlined starting by baselining our system in CO saturated environment and clearly detecting both configurations of adsorption, in particular the hitherto hardly detectable CO bridge configuration. Then, thanks to the signal enhancement provided by our platform, we find that the CO bridge configuration on platinum does not play a significant role during CO2 reduction in an alkaline environment. We anticipate that our technology will guide researchers in developing similar sensing platforms.Comment: 21 pages, 4 figure

    Mirror-coupled plasmonic bound states in the continuum for tunable perfect absorption

    Full text link
    Tailoring critical light-matter coupling is a fundamental challenge of nanophotonics, impacting diverse fields from higher harmonic generation and energy conversion to surface-enhanced spectroscopy. Plasmonic perfect absorbers (PAs), where resonant antennas couple to their mirror images in adjacent metal films, have been instrumental for obtaining different coupling regimes by tuning the antenna-film distance. However, for on-chip uses, the ideal PA gap size can only match one wavelength, and wide range multispectral approaches remain challenging. Here, we introduce a new paradigm for plasmonic PAs by combining mirror-coupled resonances with the unique loss engineering capabilities of plasmonic bound states in the continuum (BICs). Our BIC-driven PA platform leverages the asymmetry of the constituent meta-atoms as an additional degree of freedom for reaching the critical coupling (CC) condition, delivering resonances with unity absorbance and high quality factors approaching 100 in the mid-infrared. Such a platform holds flexible tuning knobs including asymmetry parameter, dielectric gap, and geometrical scaling factor to precisely control the coupling condition, resonance frequency, and selective enhancement of magnetic and electric fields while maintaining CC. We demonstrate a pixelated PA metasurface with optimal absorption over a broad range of mid-infrared frequencies (950 ~ 2000 1/cm) using only a single spacer layer thickness and apply it for multispectral surface-enhanced molecular spectroscopy in tailored coupling regimes. Our concept greatly expands the capabilities and flexibility of traditional gap-tuned PAs, opening new perspectives for miniaturized sensing platforms towards on-chip and in-situ detection.Comment: Main text and supporting information, 31 pages, 5 Figures manuscript + 11 Supporting Figure

    Plasmonic Bound States in the Continuum to Tailor Light-Matter Coupling

    Full text link
    Plasmon resonances play a pivotal role in enhancing light-matter interactions in nanophotonics, but their low-quality factors have hindered applications demanding high spectral selectivity. Even though symmetry-protected bound states in the continuum with high-quality factors have been realized in dielectric metasurfaces, impinging light is not efficiently coupled to the resonant metasurfaces and is lost in the form of reflection due to low intrinsic losses. Here, we demonstrate a novel design and 3D laser nanoprinting of plasmonic nanofin metasurfaces, which support symmetry-protected bound states in the continuum up to 4th order. By breaking the nanofins out-of-plane symmetry in parameter space, we achieve high-quality factor (up to 180) modes under normal incidence. We reveal that the out-of-plane symmetry breaking can be fine-tuned by the triangle angle of the 3D nanofin meta-atoms, opening a pathway to precisely control the ratio of radiative to intrinsic losses. This enables access to the under-, critical-, and over-coupled regimes, which we exploit for pixelated molecular sensing. Depending on the coupling regime we observe negative, no, or positive modulation induced by the analyte, unveiling the undeniable importance of tailoring light-matter interaction. Our demonstration provides a novel metasurface platform for enhanced light-matter interaction with a wide range of applications in optical sensing, energy conversion, nonlinear photonics, surface-enhanced spectroscopy, and quantum optics.Comment: 33 pages, 4 figures, 9 supplementary figure

    Intrinsic strong light-matter coupling with self-hybridized bound states in the continuum in van der Waals metasurfaces.

    Get PDF
    Photonic bound states in the continuum (BICs) provide a standout platform for strong light-matter coupling with transition metal dichalcogenides (TMDCs) but have so far mostly been implemented as traditional all-dielectric metasurfaces with adjacent TMDC layers, incurring limitations related to strain, mode overlap and material integration. Here, we demonstrate intrinsic strong coupling in BIC-driven metasurfaces composed of nanostructured bulk tungsten disulfide (WS2) and exhibiting resonances with sharp, tailored linewidths and selective enhancement of light-matter interactions. Tuning of the BIC resonances across the exciton resonance in bulk WS2 is achieved by varying the metasurface unit cells, enabling strong coupling with an anticrossing pattern and a Rabi splitting of 116 meV. Crucially, the coupling strength itself can be controlled and is shown to be independent of material-intrinsic losses. Our self-hybridized metasurface platform can readily incorporate other TMDCs or excitonic materials to deliver fundamental insights and practical device concepts for polaritonic applications

    High-Q Nanophotonics over the Full Visible Spectrum Enabled by Hexagonal Boron Nitride Metasurfaces

    Get PDF
    All-dielectric optical metasurfaces with high quality (Q) factors have been hampered by the lack of simultaneously lossless and high-refractive-index materials over the full visible spectrum. In fact, the use of low-refractive-index materials is unavoidable for extending the spectral coverage due to the inverse correlation between the bandgap energy (and therefore the optical losses) and the refractive index (n). However, for Mie resonant photonics, smaller refractive indices are associated with reduced Q factors and low mode volume confinement. Here, symmetry-broken quasi bound states in the continuum (qBICs) are leveraged to efficiently suppress radiation losses from the low-index (n approximate to 2) van der Waals material hexagonal boron nitride (hBN), realizing metasurfaces with high-Q resonances over the complete visible spectrum. The rational use of low- and high-refractive-index materials as resonator components is analyzed and the insights are harnessed to experimentally demonstrate sharp qBIC resonances with Q factors above 300, spanning wavelengths between 400 and 1000 nm from a single hBN flake. Moreover, the enhanced electric near fields are utilized to demonstrate second-harmonic generation with enhancement factors above 10(2). These results provide a theoretical and experimental framework for the implementation of low-refractive-index materials as photonic media for metaoptics

    Radial bound states in the continuum for polarization-invariant nanophotonics

    Get PDF
    All-dielectric nanophotonics underpinned by the physics of bound states in the continuum (BICs) have demonstrated breakthrough applications in nanoscale light manipulation, frequency conversion and optical sensing. Leading BIC implementations range from isolated nanoantennas with localized electromagnetic fields to symmetry-protected metasurfaces with controllable resonance quality (Q) factors. However, they either require structured light illumination with complex beam-shaping optics or large, fabrication-intense arrays of polarization-sensitive unit cells, hindering tailored nanophotonic applications and on-chip integration. Here, we introduce radial quasi-bound states in the continuum (radial BICs) as a new class of radially distributed electromagnetic modes controlled by structural asymmetry in a ring of dielectric rod pair resonators. The radial BIC platform provides polarization-invariant and tunable high-Q resonances with strongly enhanced near fields in an ultracompact footprint as low as 2 µm2. We demonstrate radial BIC realizations in the visible for sensitive biomolecular detection and enhanced second-harmonic generation from monolayers of transition metal dichalcogenides, opening new perspectives for compact, spectrally selective, and polarization-invariant metadevices for multi-functional light-matter coupling, multiplexed sensing, and high-density on-chip photonics

    All-Dielectric Structural Coloration Empowered by Bound States in the Continuum

    Full text link
    The technological requirements of low-power and high-fidelity color displays have been instrumental in driving research into advanced coloration technologies. At the forefront of these developments is the implementation of dye-free coloration techniques, which overcome previous constraints related to insufficient resolution and color fading. In this context, resonant dielectric nanostructures have emerged as a promising paradigm, showing great potential for high efficiency, remarkably high color saturation, wide gamut palette, and realistic image reproduction. However, they still face limitations related to color accuracy, purity, and simultaneous brightness tunability. Here, we demonstrate an all-dielectric metasurface empowered by photonic bound states in the continuum (BICs), which supports sharp resonances throughout the visible spectral range, ideally suited for producing a wide range of structural colors. The metasurface design consists of titanium dioxide (TiO2) ellipses with carefully controlled sizes and geometrical asymmetry, allowing versatile and on-demand variation of the brightness and hue of the output colors, respectively.Comment: Main text and supporting information, 40 pages, 4 Figures in the manuscript + 12 Figures in the supporting informatio

    Semiconductor Metasurfaces for Surface-enhanced Raman Scattering

    Full text link
    Semiconductor-based surface-enhanced Raman spectroscopy (SERS) substrates, as a new frontier in the field of SERS, are hindered by their poor electromagnetic field confinement, and weak light-matter interaction. Metasurfaces, a class of 2D artificial materials based on the electromagnetic design of nanophotonic resonators, enable strong electromagnetic field enhancement and optical absorption engineering for a wide range of semiconductor materials. However, the engineering of semiconductor substrates into metasurfaces for improving SERS activity remains underexplored. Here, we develop an improved SERS metasurface platform that leverages the combination of titanium oxide (TiO2) and the emerging physical concept of optical bound states in the continuum (BICs) to boost the Raman emission. Moreover, fine-tuning of BIC-assisted resonant absorption offers a pathway for maximizing the photoinduced charge transfer effect (PICT) in SERS. We achieve ultrahigh values of BIC-assisted electric field enhancement (|E/E0|^2 ~ 10^3), challenging the preconception of weak electromagnetic (EM) field enhancement on semiconductor SERS substrates. Our BIC-assisted TiO2 metasurface platform offers a new dimension in spectrally-tunable SERS with earth-abundant and bio-compatible semiconductor materials, beyond the traditional plasmonic ones
    corecore