128 research outputs found
Prefrontal Cortex HCN1 Channels Enable Intrinsic Persistent Neural Firing and Executive Memory Function
In many cortical neurons, HCN1 channels are the major contributors to I(h), the hyperpolarization-activated current, which regulates the intrinsic properties of neurons and shapes their integration of synaptic inputs, paces rhythmic activity, and regulates synaptic plasticity. Here, we examine the physiological role of I(h) in deep layer pyramidal neurons in mouse prefrontal cortex (PFC), focusing on persistent activity, a form of sustained firing thought to be important for the behavioral function of the PFC during working memory tasks. We find that HCN1 contributes to the intrinsic persistent firing that is induced by a brief depolarizing current stimulus in the presence of muscarinic agonists. Deletion of HCN1 or acute pharmacological blockade of I(h) decreases the fraction of neurons capable of generating persistent firing. The reduction in persistent firing is caused by the membrane hyperpolarization that results from the deletion of HCN1 or I(h) blockade, rather than a specific role of the hyperpolarization-activated current in generating persistent activity. In vivo recordings show that deletion of HCN1 has no effect on up states, periods of enhanced synaptic network activity. Parallel behavioral studies demonstrate that HCN1 contributes to the PFC-dependent resolution of proactive interference during working memory. These results thus provide genetic evidence demonstrating the importance of HCN1 to intrinsic persistent firing and the behavioral output of the PFC. The causal role of intrinsic persistent firing in PFC-mediated behavior remains an open question
A Novel Network Integrating a miRNA-203/SNAI1 Feedback Loop which Regulates Epithelial to Mesenchymal Transition
BACKGROUND: The majority of human cancer deaths are caused by metastasis. The metastatic dissemination is initiated by the breakdown of epithelial cell homeostasis. During this phenomenon, referred to as epithelial to mesenchymal transition (EMT), cells change their genetic and trancriptomic program leading to phenotypic and functional alterations. The challenge of understanding this dynamic process resides in unraveling regulatory networks involving master transcription factors (e.g. SNAI1/2, ZEB1/2 and TWIST1) and microRNAs. Here we investigated microRNAs regulated by SNAI1 and their potential role in the regulatory networks underlying epithelial plasticity. RESULTS: By a large-scale analysis on epithelial plasticity, we highlighted miR-203 and its molecular link with SNAI1 and the miR-200 family, key regulators of epithelial homeostasis. During SNAI1-induced EMT in MCF7 breast cancer cells, miR-203 and miR-200 family members were repressed in a timely correlated manner. Importantly, miR-203 repressed endogenous SNAI1, forming a double negative miR203/SNAI1 feedback loop. We integrated this novel miR203/SNAI1 with the known miR200/ZEB feedback loops to construct an a priori EMT core network. Dynamic simulations revealed stable epithelial and mesenchymal states, and underscored the crucial role of the miR203/SNAI1 feedback loop in state transitions underlying epithelial plasticity. CONCLUSION: By combining computational biology and experimental approaches, we propose a novel EMT core network integrating two fundamental negative feedback loops, miR203/SNAI1 and miR200/ZEB. Altogether our analysis implies that this novel EMT core network could function as a switch controlling epithelial cell plasticity during differentiation and cancer progression
Hyperoxic Treatment Induces Mesenchymal-to-Epithelial Transition in a Rat Adenocarcinoma Model
Tumor hypoxia is relevant for tumor growth, metabolism and epithelial-to-mesenchymal transition (EMT). We report that hyperbaric oxygen (HBO) treatment induced mesenchymal-to-epithelial transition (MET) in a dimetyl-α-benzantracene induced mammary rat adenocarcinoma model, and the MET was associated with extensive coordinated gene expression changes and less aggressive tumors. One group of tumor bearing rats was exposed to HBO (2 bar, pO2 = 2 bar, 4 exposures à 90 minutes), whereas the control group was housed under normal atmosphere (1 bar, pO2 = 0.2 bar). Treatment effects were determined by assessment of tumor growth, tumor vascularisation, tumor cell proliferation, cell death, collagen fibrils and gene expression profile. Tumor growth was significantly reduced (∼16%) after HBO treatment compared to day 1 levels, whereas control tumors increased almost 100% in volume. Significant decreases in tumor cell proliferation, tumor blood vessels and collagen fibrils, together with an increase in cell death, are consistent with tumor growth reduction and tumor stroma influence after hyperoxic treatment. Gene expression profiling showed that HBO induced MET. In conclusion, hyperoxia induced MET with coordinated expression of gene modules involved in cell junctions and attachments together with a shift towards non-tumorigenic metabolism. This leads to more differentiated and less aggressive tumors, and indicates that oxygen per se might be an important factor in the “switches” of EMT and MET in vivo. HBO treatment also attenuated tumor growth and changed tumor stroma, by targeting the vascular system, having anti-proliferative and pro-apoptotic effects
Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression
Breast cancer is the most common cancer among women, and despite significant advances in diagnosing and treating it, metastatic spread of cancer cells results in a high mortality rate. Epithelial-to-mesenchymal transition (EMT) is an embryonic program in which epithelial cells lose their characteristics and gain mesenchymal features. Therefore, EMT might play a very important role during malignant tumour progression. In this review we summarise recent advances in breast cancer research with a particular focus on the transcription factors Snail1 and Twist1. Besides discussing the role of EMT in normal mammary gland development, we describe regulatory mechanisms involving newly discovered upstream regulators and microRNAs, the association of EMT with breast cancer stem cells, and the involvement of the tumour microenvironment in breast cancer progression
Depression of glutamate and GABA release by presynaptic GABAB receptors in the entorhinal cortex in normal and chronically epileptic rats
Presynaptic GABAB receptors (GABABR) control glutamate and GABA release at many synapses in the nervous system. In the present study we used whole-cell patch-clamp recordings of spontaneous excitatory and inhibitory synaptic currents in the presence of TTX to monitor glutamate and GABA release from synapses in layer II and V of the rat entorhinal cortex (EC)in vitro. In both layers the release of both transmitters was reduced by application of GABABR agonists. Quantitatively, the depression of GABA release in layer II and layer V, and of glutamate release in layer V was similar, but glutamate release in layer II was depressed to a greater extent. The data suggest that the same GABABR may be present on both GABA and glutamate terminals in the EC, but that the heteroreceptor may show a greater level of expression in layer II. Studies with GABABR antagonists suggested that neither the auto- nor the heteroreceptor was consistently tonically activated by ambient GABA in the presence of TTX. Studies in EC slices from rats made chronically epileptic using a pilocarpine model of temporal lobe epilepsy revealed a reduced effectiveness of both auto- and heteroreceptor function in both layers. This could suggest that enhanced glutamate and GABA release in the EC may be associated with the development of the epileptic condition. Copyright © 2006 S. Karger AG
Identification of target genes for wild type and truncated HMGA2 in mesenchymal stem-like cells
Background
The HMGA2 gene, coding for an architectural transcription factor involved in mesenchymal embryogenesis, is frequently deranged by translocation and/or amplification in mesenchymal tumours, generally leading to over-expression of shortened transcripts and a truncated protein.
Methods
To identify pathways that are affected by sarcoma-associated variants of HMGA2, we have over-expressed wild type and truncated HMGA2 protein in an immortalized mesenchymal stem-like cell (MSC) line, and investigated the localisation of these proteins and their effects on differentiation and gene expression patterns.
Results
Over-expression of both transgenes blocked adipogenic differentiation of these cells, and microarray analysis revealed clear changes in gene expression patterns, more pronounced for the truncated protein. Most of the genes that showed altered expression in the HMGA2-overexpressing cells fell into the group of NF-κB-target genes, suggesting a central role for HMGA2 in this pathway. Of particular interest was the pronounced up-regulation of SSX1, already implicated in mesenchymal oncogenesis and stem cell functions, only in cells expressing the truncated protein. Furthermore, over-expression of both HMGA2 forms was associated with a strong repression of the epithelial marker CD24, consistent with the reported low level of CD24 in cancer stem cells.
Conclusions
We conclude that the c-terminal part of HMGA2 has important functions at least in mesenchymal cells, and the changes in gene expression resulting from overexpressing a protein lacking this domain may add to the malignant potential of sarcomas
Overexpression of the oncostatin-M receptor in cervical squamous cell carcinoma is associated with epithelial-mesenchymal transition and poor overall survival.
BACKGROUND: Copy-number gain of the oncostatin-M receptor (OSMR) occurs frequently in cervical squamous cell carcinoma (SCC) and is associated with adverse clinical outcome. We previously showed that OSMR overexpression renders cervical SCC cells more sensitive to the major ligand oncostatin-M (OSM), which increases migration and invasion in vitro. We hypothesised that a major contribution to this phenotype would come from epithelial-mesenchymal transition (EMT). METHODS: We performed a comprehensive integrated study, involving in vitro cell line studies, in vivo animal models and numerous clinical samples from a variety of anatomical sites. RESULTS: In independent sets of cervical, head/neck and lung SCC tissues, OSMR expression levels correlated with multiple EMT-associated phenotypic markers and transcription factors. OSM treatment of OSMR overexpressing cervical SCC cells produced consistent EMT changes and increased tumour sphere formation in suspension culture. In a mouse model, OSMR overexpressing SCC cells treated with OSM showed significant increases in lung colonisation. The biological effects of exogenous OSM were mirrored by highly significant adverse overall survival in cervical SCCs with OSMR overexpression (N=251). CONCLUSIONS: OSM:OSMR interactions are able to induce EMT, increased cancer stem cell-like properties and enhanced lung colonisation in SCC cells. These changes are likely to contribute to the highly significant adverse outcome associated with OSMR overexpression in cervical SCCs.This work was supported by Cancer Research UK (Programme Grant A13080).This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Nature Publishing Group
Molecular and pathological signatures of epithelial–mesenchymal transitions at the cancer invasion front
Reduction of epithelial cell–cell adhesion via the transcriptional repression of cadherins in combination with the acquisition of mesenchymal properties are key determinants of epithelial–mesenchymal transition (EMT). EMT is associated with early stages of carcinogenesis, cancer invasion and recurrence. Furthermore, the tumor stroma dictates EMT through intensive bidirectional communication. The pathological analysis of EMT signatures is critically, especially to determine the presence of cancer cells at the resection margins of a tumor. When diffusion barriers disappear, EMT markers may be detected in sera from cancer patients. The detection of EMT signatures is not only important for diagnosis but can also be exploited to enhance classical chemotherapy treatments. In conclusion, further detailed understanding of the contextual cues and molecular mediators that control EMT will be required in order to develop diagnostic tools and small molecule inhibitors with potential clinical implications
Role of Cancer Microenvironment in Metastasis: Focus on Colon Cancer
One person on three will receive a diagnostic of cancer during his life. About one third of them will die of the disease. In most cases, death will result from the formation of distal secondary sites called metastases. Several events that lead to cancer are under genetic control. In particular, cancer initiation is tightly associated with specific mutations that affect proto-oncogenes and tumour suppressor genes. These mutations lead to unrestrained growth of the primary neoplasm and a propensity to detach and to progress through the subsequent steps of metastatic dissemination. This process depends tightly on the surrounding microenvironment. In fact, several studies support the point that tumour development relies on a continuous cross-talk between cancer cells and their cellular and extracellular microenvironments. This signaling cross-talk is mediated by transmembrane receptors expressed on cancer cells and stromal cells. The aim of this manuscript is to review how the cancer microenvironment influences the journey of a metastatic cell taking liver invasion by colorectal cancer cells as a model
- …