693 research outputs found

    Instantons at Angles

    Get PDF
    We interpret a class of 4k-dimensional instanton solutions found by Ward, Corrigan, Goddard and Kent as four-dimensional instantons at angles. The superposition of each pair of four-dimensional instantons is associated with four angles which depend on some of the ADHM parameters. All these solutions are associated with the group Sp(k)Sp(k) and are examples of Hermitian-Einstein connections on \bE^{4k}. We show that the eight-dimensional solutions preserve 3/16 of the ten-dimensional N=1 supersymmetry. We argue that under the correspondence between the BPS states of Yang-Mills theory and those of M-theory that arises in the context of Matrix models, the instantons at angles configuration corresponds to the longitudinal intersecting 5-branes on a string at angles configuration of M-theory.Comment: 17 pages, phyzzx, many changes and a new section was adde

    Stochastic epigenetic outliers can define field defects in cancer

    Get PDF
    BACKGROUND: There is growing evidence that DNA methylation alterations may contribute to carcinogenesis. Recent data also suggest that DNA methylation field defects in normal pre-neoplastic tissue represent infrequent stochastic “outlier” events. This presents a statistical challenge for standard feature selection algorithms, which assume frequent alterations in a disease phenotype. Although differential variability has emerged as a novel feature selection paradigm for the discovery of outliers, a growing concern is that these could result from technical confounders, in principle thus favouring algorithms which are robust to outliers. RESULTS: Here we evaluate five differential variability algorithms in over 700 DNA methylomes, including two of the largest cohorts profiling precursor cancer lesions, and demonstrate that most of the novel proposed algorithms lack the sensitivity to detect epigenetic field defects at genome-wide significance. In contrast, algorithms which recognise heterogeneous outlier DNA methylation patterns are able to identify many sites in pre-neoplastic lesions, which display progression in invasive cancer. Thus, we show that many DNA methylation outliers are not technical artefacts, but define epigenetic field defects which are selected for during cancer progression. CONCLUSIONS: Given that cancer studies aiming to find epigenetic field defects are likely to be limited by sample size, adopting the novel feature selection paradigm advocated here will be critical to increase assay sensitivity

    Corruption of the Intra-Gene DNA Methylation Architecture Is a Hallmark of Cancer

    Get PDF
    Epigenetic processes - including DNA methylation - are increasingly seen as having a fundamental role in chronic diseases like cancer. It is well known that methylation levels at particular genes or loci differ between normal and diseased tissue. Here we investigate whether the intra-gene methylation architecture is corrupted in cancer and whether the variability of levels of methylation of individual CpGs within a defined gene is able to discriminate cancerous from normal tissue, and is associated with heterogeneous tumour phenotype, as defined by gene expression. We analysed 270985 CpGs annotated to 18272 genes, in 3284 cancerous and 681 normal samples, corresponding to 14 different cancer types. In doing so, we found novel differences in intra-gene methylation pattern across phenotypes, particularly in those genes which are crucial for stem cell biology; our measures of intra-gene methylation architecture are a better determinant of phenotype than measures based on mean methylation level alone (K-S test [Formula: see text] in all 14 diseases tested). These per-gene methylation measures also represent a considerable reduction in complexity, compared to conventional per-CpG beta-values. Our findings strongly support the view that intra-gene methylation architecture has great clinical potential for the development of DNA-based cancer biomarkers

    Increased entropy of signal transduction in the cancer metastasis phenotype

    Get PDF
    Studies into the statistical properties of biological networks have led to important biological insights, such as the presence of hubs and hierarchical modularity. There is also a growing interest in studying the statistical properties of networks in the context of cancer genomics. However, relatively little is known as to what network features differ between the cancer and normal cell physiologies, or between different cancer cell phenotypes. Based on the observation that frequent genomic alterations underlie a more aggressive cancer phenotype, we asked if such an effect could be detectable as an increase in the randomness of local gene expression patterns. Using a breast cancer gene expression data set and a model network of protein interactions we derive constrained weighted networks defined by a stochastic information flux matrix reflecting expression correlations between interacting proteins. Based on this stochastic matrix we propose and compute an entropy measure that quantifies the degree of randomness in the local pattern of information flux around single genes. By comparing the local entropies in the non-metastatic versus metastatic breast cancer networks, we here show that breast cancers that metastasize are characterised by a small yet significant increase in the degree of randomness of local expression patterns. We validate this result in three additional breast cancer expression data sets and demonstrate that local entropy better characterises the metastatic phenotype than other non-entropy based measures. We show that increases in entropy can be used to identify genes and signalling pathways implicated in breast cancer metastasis. Further exploration of such integrated cancer expression and protein interaction networks will therefore be a fruitful endeavour.Comment: 5 figures, 2 Supplementary Figures and Table

    Multi-angle Five-Brane Intersections

    Full text link
    We find new solutions of IIA supergravity which have the interpretation of intersecting NS-5-branes at Sp(2)Sp(2)-angles on a string preserving at least 3/32 of supersymmetry. We show that the relative position of every pair of NS-5-branes involved in the superposition is determined by four angles. In addition we explore the related configurations in IIB strings and M-theory.Comment: 18 pages,phyzzx; reference added; version to appear in PL

    dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers.

    Get PDF
    MicroRNAs (miRNAs) are often deregulated in cancer and are thought to play an important role in cancer development. Large amount of differentially expressed miRNAs have been identified in various cancers by using high-throughput methods. It is therefore quite important to make a comprehensive collection of these miRNAs and to decipher their roles in oncogenesis and tumor progression. In 2010, we presented the first release of dbDEMC, representing a database for collection of differentially expressed miRNAs in human cancers obtained from microarray data. Here we describe an update of the database. dbDEMC 2.0 documents 209 expression profiling data sets across 36 cancer types and 73 subtypes, and a total of 2224 differentially expressed miRNAs were identified. An easy-to-use web interface was constructed that allows users to make a quick search of the differentially expressed miRNAs in certain cancer types. In addition, a new function of 'meta-profiling' was added to view differential expression events according to user-defined miRNAs and cancer types. We expect this database to continue to serve as a valuable source for cancer investigation and potential clinical application related to miRNAs. dbDEMC 2.0 is freely available at http://www.picb.ac.cn/dbDEMC

    The multi-omic landscape of transcription factor inactivation in cancer

    Get PDF
    BACKGROUND: Hypermethylation of transcription factor promoters bivalently marked in stem cells is a cancer hallmark. However, the biological significance of this observation for carcinogenesis is unclear given that most of these transcription factors are not expressed in any given normal tissue. METHODS: We analysed the dynamics of gene expression between human embryonic stem cells, fetal and adult normal tissue, as well as six different matching cancer types. In addition, we performed an integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for these six cancer types. RESULTS: We here demonstrate that bivalently and PRC2 marked transcription factors highly expressed in a normal tissue are more likely to be silenced in the corresponding tumour type compared with non-housekeeping genes that are also highly expressed in the same normal tissue. Integrative multi-omic analysis of matched DNA methylation, copy number, mutational and transcriptomic data for six different matching cancer types reveals that in-cis promoter hypermethylation, and not in-cis genomic loss or genetic mutation, emerges as the predominant mechanism associated with silencing of these transcription factors in cancer. However, we also observe that some silenced bivalently/PRC2 marked transcription factors are more prone to copy number loss than promoter hypermethylation, pointing towards distinct, mutually exclusive inactivation patterns. CONCLUSIONS: These data provide statistical evidence that inactivation of cell fate-specifying transcription factors in cancer is an important step in carcinogenesis and that it occurs predominantly through a mechanism associated with promoter hypermethylation

    Accumulation of driver and passenger mutations during tumor progression

    Get PDF
    Major efforts to sequence cancer genomes are now occurring throughout the world. Though the emerging data from these studies are illuminating, their reconciliation with epidemiologic and clinical observations poses a major challenge. In the current study, we provide a novel mathematical model that begins to address this challenge. We model tumors as a discrete time branching process that starts with a single driver mutation and proceeds as each new driver mutation leads to a slightly increased rate of clonal expansion. Using the model, we observe tremendous variation in the rate of tumor development - providing an understanding of the heterogeneity in tumor sizes and development times that have been observed by epidemiologists and clinicians. Furthermore, the model provides a simple formula for the number of driver mutations as a function of the total number of mutations in the tumor. Finally, when applied to recent experimental data, the model allows us to calculate, for the first time, the actual selective advantage provided by typical somatic mutations in human tumors in situ. This selective advantage is surprisingly small, 0.005 +- 0.0005, and has major implications for experimental cancer research

    Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus

    Get PDF
    BACKGROUND: Diabetic nephropathy is a serious complication of diabetes mellitus and is associated with considerable morbidity and high mortality. There is increasing evidence to suggest that dysregulation of the epigenome is involved in diabetic nephropathy. We assessed whether epigenetic modification of DNA methylation is associated with diabetic nephropathy in a case-control study of 192 Irish patients with type 1 diabetes mellitus (T1D). Cases had T1D and nephropathy whereas controls had T1D but no evidence of renal disease. METHODS: We performed DNA methylation profiling in bisulphite converted DNA from cases and controls using the recently developed Illumina Infinium(R) HumanMethylation27 BeadChip, that enables the direct investigation of 27,578 individual cytosines at CpG loci throughout the genome, which are focused on the promoter regions of 14,495 genes. RESULTS: Singular Value Decomposition (SVD) analysis indicated that significant components of DNA methylation variation correlated with patient age, time to onset of diabetic nephropathy, and sex. Adjusting for confounding factors using multivariate Cox-regression analyses, and with a false discovery rate (FDR) of 0.05, we observed 19 CpG sites that demonstrated correlations with time to development of diabetic nephropathy. Of note, this included one CpG site located 18 bp upstream of the transcription start site of UNC13B, a gene in which the first intronic SNP rs13293564 has recently been reported to be associated with diabetic nephropathy. CONCLUSION: This high throughput platform was able to successfully interrogate the methylation state of individual cytosines and identified 19 prospective CpG sites associated with risk of diabetic nephropathy. These differences in DNA methylation are worthy of further follow-up in replication studies using larger cohorts of diabetic patients with and without nephropathy
    corecore