3,575 research outputs found

    Tightness of lead times

    Get PDF
    This paper introduces a general, formal treatment of dynamic constraints, i.e., constraints on the state changes that are allowed in a given state space. Such dynamic constraints can be seen as representations of "real world" constraints in a managerial context. The notions of transition, reversible and irreversible transition, and transition relation will be introduced. The link with Kripke models (for modal logics) is also made explicit. Several (subtle) examples of dynamic constraints will be given. Some important classes of dynamic constraints in a database context will be identified, e.g. various forms of cumulativity, non-decreasing values, constraints on initial and final values, life cycles, changing life cycles, and transition and constant dependencies. Several properties of these dependencies will be treated. For instance, it turns out that functional dependencies can be considered as "degenerated" transition dependencies. Also, the distinction between primary keys and alternate keys is reexamined, from a dynamic point of view.

    Study of the Effect of Transport Current and Combined Transverse and Longitudinal Fields on the AC Loss in NET Prototype Conductors

    Get PDF
    AC losses in cables carrying DC as well as AC transport currents at different DC background fields up to 2T have been measured on three types of Nb3Sn subcables in a new test facility. In this facility it is possible to apply sinusoidal transverse AC fields up to dB/dt=5T/s and longitudinal AC fields up to dB/dt=30T/s separately and simultaneously. The AC loss is measured with a calorimetric method. Simultaneously applied transverse and longitudinal fields can result in a loss which exceeds the added contributions of the separate applied AC fields. Within the measured range it is about correct (within 10%) to add the loss components due to DC transport current up to 10 kA and both applied transverse and longitudinal AC fields. The measured total loss is always above the sum of the loss component

    Experimental Verification of the Temperature and Strain Dependence of the Critical Properties in Nb3Sn Wires

    Get PDF
    The critical current density in Nb3Sn conductors is described with an improved scaling formula for the temperature, magnetic field and strain dependence. In an earlier study, it is concluded that the largest uncertainties in this description arise from the temperature dependence that is described with various slightly different empirical relations. For the optimization of the numerical codes, used to predict the stability of large magnet systems, a more accurate description is required. Therefore, two different bronze processed conductors for the ITER CS model coil are analyzed in detail. The critical current is measured at temperatures from 4.2 K up to the critical temperature, in magnetic fields from 1 T to 13 T and with an applied axial strain from -0.6% to +0.4%. The axial strain is applied by a U-shaped bending spring and a comparison is made between brass and Ti-6Al-4V, as substrate materia

    The Effect of Inter-bundle Resistive Barriers on Coupling Loss, Current Distribution and DC Performance in ITER Conductors

    Get PDF
    The role of inter-bundle resistive barriers (metal sheet wraps), introduced to reduce the inter-bundle coupling loss in multistage cabled Cable-In-Conduit Conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER) is evaluated, based on results gained recently on short sample experiments in the Twente Cable Press and SULTAN. The obvious benefit of limiting the inter bundle coupling loss unavoidably goes together with impeding the redistribution of nonuniform currents in the coil winding introduced at the terminations, as well as reduction of the heat exchange between the bundles. Six-element numerical electromagnetic code simulations are presented that qualitatively explain the effect of wraps on the DC performance, strongly depending on the testing geometry. The computations illustrate that wraps can reduce the DC performance in short sample tests. At the same time simulations of the Poloidal Field Coil Insert (PFCI), with a winding length of 50 m, have shown that omitting sub-stage wraps, can even degrade the DC performance of coils due to the short current transfer length in combination with current nonuniformity causing peak voltages in the most overloaded petals

    Electromagnetic Performance of Sub-Size NbTi CICC's Subjected to Transverse Cyclic Loading

    Get PDF
    It was demonstrated previously that transverse cable loading due to electromagnetic forces in coils has a strong impact on the inter-strand contact resistance R/sub c/ of poloidal field (PF) cable-in-conduit conductors (CICC) for the International Thermonuclear Experimental Reactor (ITER). Continuing the study, two NbTi medium-size CICC's were subjected to cyclic loading up to 40,000 cycles in the Twente Cryogenic Press in order to simulate transversal forces on the strands and to verify their influence on the conductors' contact resistances R/sub c/ and AC loss behavior. The results are presented and compared with the data obtained on the other section of the same conductor lengths in the SULTAN test facility and on full size ITER cables tested in the cryogenic press

    Self Field Measurements by Hall Sensors on the SeCRETS Long Sample CICCs in SULTAN

    Get PDF
    The aim of this work is to determine the existence and degree of the current unbalance of two types of cable-in-conduit conductors (CICC) of the SeCRETS long sample experiment, and its influence on the conductors' performance. The self-field measurements are performed by using six sets of annular Hall sensors, each containing six sensors, and two linear arrays with ten sensors. The change of the self-field is associated with the redistribution of the transport current between the strands inside the conductor during and after a ramp of current, due to changes of the applied magnetic field or temperature of the conductor. During the DC, AC losses and stability tests, the signals from the Hall sensors were recorded. In DC tests, a clear change of the self-field pattern is observed in the high field region when either current or temperature approached their critical (I/sub cs/ and T/sub cs/) values. No change in the self-field pattern is observed in the experiments with pulsed fields. The method requires improvements for a reasonable quantitative assessment of the current unbalance in the conductor

    Evolution of contact resistance and coupling loss in prototype ITER PF NbTi conductors under transverse cyclic load

    Get PDF
    Cyclic energizing of a magnet coil with Cable in Conduit Conductors (CICC), as for fusion applications, results in an anomalous change of the interstrand contact resistance (R/sub c/) and coupling loss (n/spl tau/) due to the alternating transverse forces. Previously, three Nb/sub 3/Sn ITER conductors have been tested in a cryogenic press, up to 40 cycles. Now, for the first time, the behavior of NbTi conductors under cyclic load is investigated and results are presented for three full-size prototype ITER Poloidal Field (PF) Coil conductors. One conductor has bare copper strands and no petal wrapping while the others have a Cr and solder strand surface coating. The press can transmit a maximum transverse force of 800 kN/m directly to a cable section of 400 mm length at 4.2 K. Each conductor is tested up to 220 kN/m and 40,000 full loading cycles. The magnetization of the conductors and the R/sub c/ between combinations of strands and strand bundles is measured at various number of cycles. It appears that the R/sub c/ can vary for up to orders of magnitude during cyclic loading

    Tightness of lead times

    Get PDF

    Tightness of lead times

    Get PDF

    Interaction between current imbalance and magnetization in LHC cables

    Get PDF
    The quality of the magnetic field in superconducting accelerator magnets is associated with the properties of the superconducting cable. Current imbalances due to coupling currents ÂżI, as large as 100 A, are induced by spatial variations of the field sweep rate and contact resistances. During injection at a constant field all magnetic field components show a decay behavior. The decay is caused by a diffusion of coupling currents into the whole magnet. This results in a redistribution of the transport current among the strands and causes a demagnetization of the superconducting cable. As soon as the field is ramped up again after the end of injection, the magnetization rapidly recovers from the decay and follows the course of the original hysteresis curve. In order to clarify the interactions between the changes in current and magnetization during injection the authors performed a number of experiments. A magnetic field with a spatially periodic pattern was applied to a superconducting wire in order to simulate the coupling behavior in a magnet. This model system was placed into a stand for magnetization measurements and the influence of different powering conditions was analyze
    • 

    corecore