401 research outputs found
A low cost scheme for high precision dual-wavelength laser metrology
A novel method capable of delivering relative optical path length metrology
with nanometer precision is demonstrated. Unlike conventional dual-wavelength
metrology which employs heterodyne detection, the method developed in this work
utilizes direct detection of interference fringes of two He-Ne lasers as well
as a less precise stepper motor open-loop position control system to perform
its measurement. Although the method may be applicable to a variety of
circumstances, the specific application where this metrology is essential is in
an astrometric optical long baseline stellar interferometer dedicated to
precise measurement of stellar positions. In our example application of this
metrology to a narrow-angle astrometric interferometer, measurement of
nanometer precision could be achieved without frequency-stabilized lasers
although the use of such lasers would extend the range of optical path length
the metrology can accurately measure. Implementation of the method requires
very little additional optics or electronics, thus minimizing cost and effort
of implementation. Furthermore, the optical path traversed by the metrology
lasers is identical with that of the starlight or science beams, even down to
using the same photodetectors, thereby minimizing the non-common-path between
metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic
Atmospheric coherence times in interferometry: definition and measurement
Current and future ground-based interferometers require knowledge of the
atmospheric time constant t_0, but this parameter has diverse definitions.
Moreover, adequate techniques for monitoring t_0 still have to be implemented.
We derive a new formula for the structure function of the fringe phase
(piston) in a long-baseline interferometer, and review available techniques for
measuring the atmospheric time constant and the shortcomings.
It is shown that the standard adaptive-optics atmospheric time constant is
sufficient for quantifying the piston coherence time, with only minor
modifications. The residual error of a fast fringe tracker and the loss of
fringe visibility in a finite exposure time are calculated in terms of the same
parameter. A new method based on the fast variations of defocus is proposed.
The formula for relating the defocus speed to the time constant is derived.
Simulations of a 35-cm telescope demonstrate the feasibility of this new
technique for site testing.Comment: 8 pages, 6 figures, A&A in pres
Long-Baseline Interferometric Multiplicity Survey of the Sco-Cen OB Association
We present the first multiplicity-dedicated long baseline optical
interferometric survey of the Scorpius-Centaurus-Lupus-Crux association. We
used the Sydney University Stellar Interferometer to undertake a survey for new
companions to 58 Sco-Cen B- type stars and have detected 24 companions at
separations ranging from 7-130mas, 14 of which are new detections. Furthermore,
we use a Bayesian analysis and all available information in the literature to
determine the multiplicity distribution of the 58 stars in our sample, showing
that the companion frequency is F = 1.35 and the mass ratio distribution is
best described as a power law with exponent equal to -0.46, agreeing with
previous Sco-Cen high mass work and differing significantly from lower-mass
stars in Tau-Aur. Based on our analysis, we estimate that among young B-type
stars in moving groups, up to 23% are apparently single stars. This has strong
implications for the understanding of high-mass star formation, which requires
angular momentum dispersal through some mechanism such as formation of multiple
systems.Comment: 7 figures, 5 tables, accepted for publication in MNRA
The radius and mass of the subgiant star bet Hyi from interferometry and asteroseismology
We have used the Sydney University Stellar Interferometer (SUSI) to measure
the angular diameter of beta Hydri. This star is a nearby G2 subgiant whose
mean density was recently measured with high precision using asteroseismology.
We determine the radius and effective temperature of the star to be
1.814+/-0.017 R_sun (0.9%) and 5872+/-44 K (0.7%) respectively. By combining
this value with the mean density, as estimated from asteroseismology, we make a
direct estimate of the stellar mass. We find a value of 1.07+/-0.03 M_sun
(2.8%), which agrees with published estimates based on fitting in the H-R
diagram, but has much higher precision. These results place valuable
constraints on theoretical models of beta Hyi and its oscillation frequencies.Comment: 3 figures, 3 tables, to appear in MNRAS Letter
Low-cost scheme for high-precision dual-wavelength laser metrology
A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.This research was supported under the Australian
Research Council’s Discovery Project funding
scheme. Y. K. was supported by the University of
Sydney International Scholarship (USydIS)
Orbital parameters, masses and distance to Beta Centauri determined with the Sydney University Stellar Interferometer and high resolution spectroscopy
The bright southern binary star beta Centauri (HR 5267) has been observed
with the Sydney University Stellar Interferometer (SUSI) and spectroscopically
with the ESO CAT and Swiss Euler telescopes at La Silla. The interferometric
observations have confirmed the binary nature of the primary component and have
enabled the determination of the orbital parameters of the system. At the
observing wavelength of 442 nm the two components of the binary system have a
magnitude difference of 0.15. The combination of interferometric and
spectroscopic data gives the following results: orbital period 357 days,
semi-major axis 25.30 mas, inclination 67.4 degrees, eccentricity 0.821,
distance 102.3 pc, primary and secondary masses M1 = M2 = 9.1 solar masses and
absolute visual magnitudes of the primary and secondary M1V = -3.85 and M2V =
-3.70. The high accuracy of the results offers a fruitful starting point for
future asteroseismic modelling of the pulsating binary components.Comment: 10 pages, 4 figures. Accepted for publication in MNRA
A new concept for the combination of optical interferometers and high-resolution spectrographs
The combination of high spatial and spectral resolution in optical astronomy
enables new observational approaches to many open problems in stellar and
circumstellar astrophysics. However, constructing a high-resolution
spectrograph for an interferometer is a costly and time-intensive undertaking.
Our aim is to show that, by coupling existing high-resolution spectrographs to
existing interferometers, one could observe in the domain of high spectral and
spatial resolution, and avoid the construction of a new complex and expensive
instrument. We investigate in this article the different challenges which arise
from combining an interferometer with a high-resolution spectrograph. The
requirements for the different sub-systems are determined, with special
attention given to the problems of fringe tracking and dispersion. A concept
study for the combination of the VLTI (Very Large Telescope Interferometer)
with UVES (UV-Visual Echelle Spectrograph) is carried out, and several other
specific instrument pairings are discussed. We show that the proposed
combination of an interferometer with a high-resolution spectrograph is indeed
feasible with current technology, for a fraction of the cost of building a
whole new spectrograph. The impact on the existing instruments and their
ongoing programs would be minimal.Comment: 27 pages, 9 figures, Experimental Astronomy; v2: accepted versio
The Palomar Testbed Interferometer
The Palomar Testbed Interferometer (PTI) is a long-baseline infrared
interferometer located at Palomar Observatory, California. It was built as a
testbed for interferometric techniques applicable to the Keck Interferometer.
First fringes were obtained in July 1995. PTI implements a dual-star
architecture, tracking two stars simultaneously for phase referencing and
narrow-angle astrometry. The three fixed 40-cm apertures can be combined
pair-wise to provide baselines to 110 m. The interferometer actively tracks the
white-light fringe using an array detector at 2.2 um and active delay lines
with a range of +/- 38 m. Laser metrology of the delay lines allows for servo
control, and laser metrology of the complete optical path enables narrow-angle
astrometric measurements. The instrument is highly automated, using a
multiprocessing computer system for instrument control and sequencing.Comment: ApJ in Press (Jan 99) Fig 1 available from
http://huey.jpl.nasa.gov/~bode/ptiPicture.html, revised duging copy edi
The future of enterprise groupware applications
This paper provides a review of groupware technology and products. The purpose of this review is to investigate the appropriateness of current groupware technology as the basis for future enterprise systems and evaluate its role in realising, the currently emerging, Virtual Enterprise model for business organisation. It also identifies in which way current technological phenomena will transform groupware technology and will drive the development of the enterprise systems of the future
- …
