326 research outputs found
Sexually Transmitted Diseases among the Women of Northern Tanzania and the Government Initiatives to Control the Diseases in Colonial and Post-Colonial Tanzania From The 1890s to 2000s
This paper explores the trends in prevalence of Sexually Transmitted Disease among the Women of Northern Tanzania and the Government Initiatives to control the diseases in Colonial and Post colonial Tanzania from the 1890s to 2000s. Specifically, the paper focuses on the forces that shaped the spread of STDs, the discourses on their socio-economic impact; and the government initiatives to control the diseases. Rather than focusing on STDS on the general population as it has been the case with many other studies, this paper examines the history of STDs among the women in northern Tanzania. It is argued that the spread, impacts and responses to the disease were determined by global context, government and culture. On understanding the cultural and biological aspects of STDs the paper draws the combination of political economy and social constructionism theories. The paper has established that the prevalence of STDs can be traced specifically during the early contact of African community with the external world, the sailors and the merchants, that its spread was driven by different factors; and that the diseases enlisted varied initiatives from both government and society at large. To support the aforementioned findings, this paper used secondary sources namely historical and medical books, journal articles, theses and electronic materials. This study is significant as it adds to a body of historical knowledge on how STDs affected women and the initiatives the community, colonial and post-colonial Tanzania governments took to control such diseases
In silico study of the ageing effect upon aortic valves
A fluid–structure interaction (FSI) numerical model of the aortic valve was used to simulate and compare young and physiological aged operating conditions. The effect of normal ageing was considered by introducing alterations typically associated with senility: namely mild stiffening of the tissues and progressive dilation of the aortic chamber. The aim of this study is to provide a haemodynamic baseline which allows to assess the typical physiological variations associated with advancing age. Results were analysed in terms of leaflets kinematics, flow dynamics, pressure and valve performance parameters. The study indicates that the normal changes occurring with ageing, such as stiffening and progressive aortic root dilation, can result in substantial alterations in the haemodynamics and mechanical efficiency of the aortic valve. In particular, mild tissue stiffening and aortic root dilation reduce the valve efficiency over the cardiac cycle. The concomitant presence of both phenomena can lead to some mitigation of the impairment. The observed changes, which can be associated with normal and healthy ageing, need to be taken into consideration when evaluating the real pathological contribution of aortic valve diseases occurring in aged patients
A low cost scheme for high precision dual-wavelength laser metrology
A novel method capable of delivering relative optical path length metrology
with nanometer precision is demonstrated. Unlike conventional dual-wavelength
metrology which employs heterodyne detection, the method developed in this work
utilizes direct detection of interference fringes of two He-Ne lasers as well
as a less precise stepper motor open-loop position control system to perform
its measurement. Although the method may be applicable to a variety of
circumstances, the specific application where this metrology is essential is in
an astrometric optical long baseline stellar interferometer dedicated to
precise measurement of stellar positions. In our example application of this
metrology to a narrow-angle astrometric interferometer, measurement of
nanometer precision could be achieved without frequency-stabilized lasers
although the use of such lasers would extend the range of optical path length
the metrology can accurately measure. Implementation of the method requires
very little additional optics or electronics, thus minimizing cost and effort
of implementation. Furthermore, the optical path traversed by the metrology
lasers is identical with that of the starlight or science beams, even down to
using the same photodetectors, thereby minimizing the non-common-path between
metrology and science channels.Comment: 17 pages, 4 figures, accepted for publication in Applied Optic
A Supervisor Αgent-Based on the Markovian Decision Process Framework to Optimize the Behavior of a Highly Automated System
In this paper, we explore how MDP can be used as the framework to design and develop an Intelligent Decision Support System/Recommender System, in order to extend human perception and overcome human senses limitations (because covered by the ADS), by augmenting human cognition, emphasizing human judgement and intuition, as well as supporting him/her to take the proper decision in the right terms and time. Moreover, we develop Human-Machine Interaction (HMI) strategies able to make “transparent” the decision-making/recommendation process. This is strongly needed, since the adoption of partial automated systems is not only connected to the effectiveness of the decision and control processes, but also relies on how these processes are communicated and “explained” to the human driver, in order to achieve his/her trust
Atmospheric coherence times in interferometry: definition and measurement
Current and future ground-based interferometers require knowledge of the
atmospheric time constant t_0, but this parameter has diverse definitions.
Moreover, adequate techniques for monitoring t_0 still have to be implemented.
We derive a new formula for the structure function of the fringe phase
(piston) in a long-baseline interferometer, and review available techniques for
measuring the atmospheric time constant and the shortcomings.
It is shown that the standard adaptive-optics atmospheric time constant is
sufficient for quantifying the piston coherence time, with only minor
modifications. The residual error of a fast fringe tracker and the loss of
fringe visibility in a finite exposure time are calculated in terms of the same
parameter. A new method based on the fast variations of defocus is proposed.
The formula for relating the defocus speed to the time constant is derived.
Simulations of a 35-cm telescope demonstrate the feasibility of this new
technique for site testing.Comment: 8 pages, 6 figures, A&A in pres
Long-Baseline Interferometric Multiplicity Survey of the Sco-Cen OB Association
We present the first multiplicity-dedicated long baseline optical
interferometric survey of the Scorpius-Centaurus-Lupus-Crux association. We
used the Sydney University Stellar Interferometer to undertake a survey for new
companions to 58 Sco-Cen B- type stars and have detected 24 companions at
separations ranging from 7-130mas, 14 of which are new detections. Furthermore,
we use a Bayesian analysis and all available information in the literature to
determine the multiplicity distribution of the 58 stars in our sample, showing
that the companion frequency is F = 1.35 and the mass ratio distribution is
best described as a power law with exponent equal to -0.46, agreeing with
previous Sco-Cen high mass work and differing significantly from lower-mass
stars in Tau-Aur. Based on our analysis, we estimate that among young B-type
stars in moving groups, up to 23% are apparently single stars. This has strong
implications for the understanding of high-mass star formation, which requires
angular momentum dispersal through some mechanism such as formation of multiple
systems.Comment: 7 figures, 5 tables, accepted for publication in MNRA
The radius and mass of the subgiant star bet Hyi from interferometry and asteroseismology
We have used the Sydney University Stellar Interferometer (SUSI) to measure
the angular diameter of beta Hydri. This star is a nearby G2 subgiant whose
mean density was recently measured with high precision using asteroseismology.
We determine the radius and effective temperature of the star to be
1.814+/-0.017 R_sun (0.9%) and 5872+/-44 K (0.7%) respectively. By combining
this value with the mean density, as estimated from asteroseismology, we make a
direct estimate of the stellar mass. We find a value of 1.07+/-0.03 M_sun
(2.8%), which agrees with published estimates based on fitting in the H-R
diagram, but has much higher precision. These results place valuable
constraints on theoretical models of beta Hyi and its oscillation frequencies.Comment: 3 figures, 3 tables, to appear in MNRAS Letter
Artificial co-drivers as a universal enabling technology for future intelligent vehicles and transportation systems
This position paper introduces the concept of artificial “co-drivers” as an enabling technology for future intelligent transportation systems. In Sections I and II, the design principles of co-drivers are introduced and framed within general human–robot interactions. Several contributing theories and technologies are reviewed, specifically those relating to relevant cognitive architectures, human-like sensory-motor strategies, and the emulation theory of cognition. In Sections III and IV, we present the co-driver developed for the EU project interactIVe as an example instantiation of this notion, demonstrating how it conforms to the given guidelines. We also present substantive experimental results and clarify the limitations and performance of the current implementation. In Sections IV and V, we analyze the impact of the co-driver technology. In particular, we identify a range of application fields, showing how it constitutes a universal enabling technology for both smart vehicles and cooperative systems, and naturally sets out a program for future research
Low-cost scheme for high-precision dual-wavelength laser metrology
A method capable of delivering relative optical path length metrology with nanometer precision is demonstrated. Unlike conventional dual-wavelength metrology, which employs heterodyne detection, the method developed in this work utilizes direct detection of interference fringes of two He-Ne lasers as well as a less precise stepper motor open-loop position control system to perform its measurement. Although the method may be applicable to a variety of circumstances, the specific application in which this metrology is essential is in an astrometric optical long baseline stellar interferometer dedicated to precise measurement of stellar positions. In our example application of this metrology to a narrow-angle astrometric interferometer, measurement of nanometer precision could be achieved without frequency-stabilized lasers, although the use of such lasers would extend the range of optical path length the metrology can accurately measure. Implementation of the method requires very little additional optics or electronics, thus minimizing the cost and effort of implementation. Furthermore, the optical path traversed by the metrology lasers is identical to that of the starlight or science beams, even down to using the same photodetectors, thereby minimizing the noncommon path between metrology and science channels.This research was supported under the Australian
Research Council’s Discovery Project funding
scheme. Y. K. was supported by the University of
Sydney International Scholarship (USydIS)
- …