3 research outputs found
Strategies, methods and tools for managing nanorisks in construction
This paper presents a general overview of the work carried out by European project SCAFFOLD (GA 280535) during its 30 months of life, with special emphasis on risk management component. The research conducted by SCAFFOLD is focused on the European construction sector and considers 5 types of nanomaterials (TiO2, SiO2, carbon nanofibres, cellulose nanofibers and nanoclays), 6 construction applications (Depollutant mortars, selfcompacting concretes, coatings, self-cleaning coatings, fire resistant panels and insulation materials) and 26 exposure scenarios, including lab, pilot and industrial scales. The document focuses on the structure, content and operation modes of the Risk Management Toolkit developed by the project to facilitate the implementation of "nano-management" in construction companies. The tool deploys and integrated approach OHSAS 18001 - ISO 31000 and is currently being validated on 5 industrial case studies.Research carried out by project SCAFFOLD was made possible thanks to funding from the European
Commission, through the Seventh Framework Programme (GA 280535
Microwave response of interacting oxide two-dimensional electron systems
We present an experimental study on microwave illuminated high mobility MgZnO/ZnO based two-dimensional electron systems with different electron densities and, hence, varying Coulomb interaction strength. The photoresponse of the low-temperature dc resistance in perpendicular magnetic field is examined in low and high density samples over a broad range of illumination frequencies. In low density samples a response due to cyclotron resonance (CR) absorption dominates, while high-density samples exhibit pronounced microwave-induced resistance oscillations (MIRO). Microwave transmission experiments serve as a complementary means of detecting the CR over the entire range of electron densities and as a reference for the band mass unrenormalized by interactions. Both CR and MIRO-associated features in the resistance permit extraction of the effective mass of electrons but yield two distinct values. The conventional cyclotron mass representing center-of-mass dynamics exhibits no change with density and coincides with the band electron mass of bulk ZnO, while MIRO mass reveals a systematic increase with lowering electron density consistent with renormalization expected in interacting Fermi liquids