297 research outputs found
Kondo-Dicke resonances in electronic transport through triple quantum dots
Electronic transport through a triple quantum dot system, with only a single
dot coupled directly to external leads, is considered theoretically. The model
includes Coulomb correlations in the central dot, while such correlations in
the two side-coupled dots are omitted. The infinite-U mean-field slave-boson
approach is used to obtain basic transport characteristics in the Kondo regime.
When tuning position of the side-coupled dots' levels, transition from
subradiant to superradiant like mode (and vice versa) has been found in the
spectral function, in analogy to the Dicke effect in atomic physics. Bias
dependence of the differential conductance and zero frequency shot noise is
also analysed.Comment: 8 pages, 10 figure
HLA-Associated viral mutations are common in human immunodeficiency virus type 1 elite controllers
Elite controllers (EC) of human immunodeficiency virus type 1 (HTV-1) maintain viremia below the limit of detection without antiretroviral treatment. Virus-specific cytotoxic CD8+ T lymphocytes are believed to play a crucial role in viral containment, but the degree of immune imprinting and compensatory mutations in EC is unclear. We obtained plasma gag, pol, and nef sequences from HLA-diverse subjects and found that 30 to 40% of the predefined HLA-associated polymorphic sites show evidence of immune selection pressure in EC., compared to approximately 50% of the sites in chronic progressors. These data indicate ongoing viral replication and escape from cytotoxic T lymphocytes are present even in strictly controlled HTV-1 infection
A viral CTL escape mutation leading to immunoglobulin-like transcript 4-mediated functional inhibition of myelomonocytic cells
Viral mutational escape can reduce or abrogate recognition by the T cell receptor (TCR) of virus-specific CD8+ T cells. However, very little is known about the impact of cytotoxic T lymphocyte (CTL) epitope mutations on interactions between peptide–major histocompatibility complex (MHC) class I complexes and MHC class I receptors expressed on other cell types. Here, we analyzed a variant of the immunodominant human leukocyte antigen (HLA)-B2705–restricted HIV-1 Gag KK10 epitope (KRWIILGLNK) with an L to M amino acid substitution at position 6 (L6M), which arises as a CTL escape variant after primary infection but is sufficiently immunogenic to elicit a secondary, de novo HIV-1–specific CD8+ T cell response with an alternative TCR repertoire in chronic infection. In addition to altering recognition by HIV-1–specific CD8+ T cells, the HLA-B2705–KK10 L6M complex also exhibits substantially increased binding to the immunoglobulin-like transcript (ILT) receptor 4, an inhibitory MHC class I–specific receptor expressed on myelomonocytic cells. Binding of the B2705–KK10 L6M complex to ILT4 leads to a tolerogenic phenotype of myelomonocytic cells with lower surface expression of dendritic cell (DC) maturation markers and co-stimulatory molecules. These data suggest a link between CTL-driven mutational escape, altered recognition by innate MHC class I receptors on myelomonocytic cells, and functional impairment of DCs, and thus provide important new insight into biological consequences of viral sequence diversificatio
50 Tbit/s Massively ParallelWDMTransmission in C and L Band Using Interleaved Cavity-Soliton Kerr Combs
Interleaving two soliton Kerr combs we generate 179 carriers for WDM transmission and demonstrate transmission of a data stream of 50 Tbit/s over 75 km. This is the highest data rate achieved with a chip-scale comb source
The tunnel magnetoresistance in chains of quantum dots weakly coupled to external leads
We analyze numerically the spin-dependent transport through coherent chains
of three coupled quantum dots weakly connected to external magnetic leads. In
particular, using the diagrammatic technique on the Keldysh contour, we
calculate the conductance, shot noise and tunnel magnetoresistance (TMR) in the
sequential and cotunneling regimes. We show that transport characteristics
greatly depend on the strength of the interdot Coulomb correlations, which
determines the spacial distribution of electron wave function in the chain.
When the correlations are relatively strong, depending on the transport regime,
we find both negative TMR as well as TMR enhanced above the Julliere value,
accompanied with negative differential conductance (NDC) and super-Poissonian
shot noise. This nontrivial behavior of tunnel magnetoresistance is associated
with selection rules that govern tunneling processes and various high-spin
states of the chain that are relevant for transport. For weak interdot
correlations, on the other hand, the TMR is always positive and not larger than
the Julliere TMR, although super-Poissonian shot noise and NDC can still be
observed
OA031-04. Impairment of HIV-1-specific CD8+ T cell function by soluble epithelial adhesion molecules
- …