2,085 research outputs found
Depression-Related Differences in Learning and Forgetting Responses to Unrelated Cues
Using the think/no-think paradigm, we examined the effect of a meaningful connection between emotionally neutral cues and targets on initial learning and later recall by students in dysphoric or nondysphoric mood states. Compared to meaningfully connected cue-target pairs, unrelated pairs were less easily learned and more easily forgotten, even when initial learning was controlled. Depressive deficits were obtained in initial learning (only marginally) and final recall. When examined separately within each cuing condition, the recall deficit associated with depressed mood was restricted to the unrelated condition, but when initial learning differences were controlled this deficit was only marginally significant. Results are discussed in relation to other recent findings concerning depression-related performance in this paradigm and to findings of depression and memory more generally
Spin-Seebeck effect in a strongly interacting Fermi gas
We study the spin-Seebeck effect in a strongly interacting, two-component
Fermi gas and propose an experiment to measure this effect by relatively
displacing spin up and spin down atomic clouds in a trap using spin-dependent
temperature gradients. We compute the spin-Seebeck coefficient and related
spin-heat transport coefficients as functions of temperature and interaction
strength. We find that when the inter-spin scattering length becomes larger
than the Fermi wavelength, the spin-Seebeck coefficient changes sign as a
function of temperature, and hence so does the direction of the
spin-separation. We compute this zero-crossing temperature as a function of
interaction strength and in particular in the unitary limit for the inter-spin
scattering
Novel theoretical approach in photoemission spectroscopy: application to isotope effect and boron-doped diamond
A new path-integral theory is developed to calculate the photoemission
spectra (PES) of correlated many-electron systems. The application to the study
on Bi2Sr2CaCu2O8 (Bi2212) and boron-doped diamond (BDD) is discussed in
details. It is found that the isotopic shift in the angle-resolved
photoemission spectra of Bi2212 is due to the off-diagonal quadratic
electron-phonon (e-ph) coupling, whereas the presence of electron-electron
repulsion partially suppresses this effect. For the BDD, a semiconductor-metal
phase transition, which is induced by increasing the e-ph coupling and dopant
concentration, is reproduced by our theory. Additionally, the presence of Fermi
edge and phonon step-like structure in PES is found to be due to a co-existence
of itinerant and localized electronic states in BDD.Comment: 6 pages, 4 figures, Procs. of LEHTSC 2007, submitted to J. Phys.:
Conf. Se
Transport implications of Fermi arcs in the pseudogap phase of the cuprates
We derive the fermionic contribution to the longitudinal and Hall
conductivities within a Kubo formalism, using a phenomenological Greens
function which has been previously developed to describe photoemission data in
the pseudogap phase of the cuprates. We find that the in-plane electrical and
thermal conductivities are metallic-like, showing a universal limit behavior
characteristic of a d-wave spectrum as the scattering rate goes to zero. In
contrast, the c-axis resistivity and the Hall number are insulating-like, being
divergent in the same limit. The relation of these results to transport data in
the pseudogap phase is discussed.Comment: 3 pages, 2 figure
Thermoelectric and Seebeck coefficients of granular metals
In this work we present a detailed study and derivation of the thermopower
and thermoelectric coefficient of nano-granular metals at large tunneling
conductance between the grains, g_T>> 1. An important criterion for the
performance of a thermoelectric device is the thermodynamic figure of merit
which is derived using the kinetic coefficients of granular metals. All results
are valid at intermediate temperatures, E_c>>T/g_T>\delta, where \delta is the
mean energy level spacing for a single grain and E_c its charging energy. We
show that the electron-electron interaction leads to an increase of the
thermopower with decreasing grain size and discuss our results in the light of
future generation thermoelectric materials for low temperature applications.
The behavior of the figure of merit depending on system parameters like grain
size, tunneling conductance, and temperature is presented.Comment: 27 pages, 10 figures, revtex
Enhanced carrier scattering rates in dilute magnetic semiconductors with correlated impurities
In III-V dilute magnetic semiconductors (DMSs) such as GaMnAs,
the impurity positions tend to be correlated, which can drastically affect the
electronic transport properties of these materials. Within the memory function
formalism we have derived a general expression for the current relaxation
kernel in spin and charge disordered media and have calculated spin and charge
scattering rates in the weak-disorder limit. Using a simple model for magnetic
impurity clustering, we find a significant enhancement of the charge
scattering. The enhancement is sensitive to cluster parameters and may be
controllable through post-growth annealing.Comment: 4 pages, 3 figure
Mechanism for large thermoelectric power in negative-U molecular quantum dots
We investigate with the aid of numerical renormalization group techniques the
thermoelectric properties of a molecular quantum dot described by the
negative-U Anderson model. We show that the charge Kondo effect provides a
mechanism for enhanced thermoelectric power via a correlation induced asymmetry
in the spectral function close to the Fermi level. We show that this effect
results in a dramatic enhancement of the Kondo induced peak in the thermopower
of negative-U systems with Seebeck coefficients exceeding 50 over a
wide range of gate voltages.Comment: 4 pages, 4 figures; published versio
Simulations of stable compact proton beam acceleration from a two-ion-species ultrathin foil
We report stable laser-driven proton beam acceleration from ultrathin foils
consisting of two ion species: heavier carbon ions and lighter protons.
Multi-dimensional particle-in-cell (PIC) simulations show that the radiation
pressure leads to very fast and complete spatial separation of the species. The
laser pulse does not penetrate the carbon ion layer, avoiding the proton
Rayleigh-Taylor-like (RT) instability. Ultimately, the carbon ions are heated
and spread extensively in space. In contrast, protons always ride on the front
of the carbon ion cloud, forming a compact high quality bunch. We introduce a
simple three-interface model to interpret the instability suppression in the
proton layer. The model is backed by simulations of various compound foils such
as carbon-deuterium (C-D) and carbon-tritium (C-T) foils. The effects of the
carbon ions' charge state on proton acceleration are also investigated. It is
shown that with the decrease of the carbon ion charge state, both the RT-like
instability and the Coulomb explosion degrade the energy spectrum of the
protons. Finally, full 3D simulations are performed to demonstrate the
robustness of the stable two-ion-species regime.Comment: 14 pages, 10figures, to be published in PO
Intersubband Edge Singularity in Metallic Nanotubes
Tunneling density of states of both the massless and massive (gapped)
particles in metallic carbon nanotubes is known to have anomalous energy
dependence. This is the result of coupling to multiple low-energy bosonic
excitation (plasmons). For both kinds of particles the ensuing effect is the
suppression of the density of states by electron-electron interactions. We
demonstrate that the optical absorption between gapless and gapped states is
affected by the many-body effects in the opposite way. The absorption
probability is enhanced compared with the non-interacting value and develops a
power-law frequency dependence with the exponent -0.2 for typical nanotubes.Comment: 4 pages, 1 figure (final version, discussion of Sommerfeld factor and
Ref. 11 added
Thermoelectric Response Near the Density Driven Mott Transition
We investigate the thermoelectric response of correlated electron systems
near the density driven Mott transition using the dynamical mean field theory.Comment: 4 pages, 2 embedded figure
- …