6,681 research outputs found
Volume Weighted Measures of Eternal Inflation in the Bousso-Polchinski Landscape
We consider the cosmological dynamics associated with volume weighted
measures of eternal inflation, in the Bousso-Polchinski model of the string
theory landscape. We find that this measure predicts that observers are most
likely to find themselves in low energy vacua with one flux considerably larger
than the rest. Furthermore, it allows for a satisfactory anthropic explanation
of the cosmological constant problem by producing a smooth, and approximately
constant, distribution of potentially observable values of Lambda. The low
energy vacua selected by this measure are often short lived. If we require
anthropically acceptable vacua to have a minimum life-time of 10 billion years,
then for reasonable parameters a typical observer should expect their vacuum to
have a life-time of approximately 12 billion years. This prediction is model
dependent, but may point toward a solution to the coincidence problem of
cosmology.Comment: 35 pages, 8 figure
Inflation with
We discuss various models of inflationary universe with . A
homogeneous universe with may appear due to creation of the
universe "from nothing" in the theories where the effective potential becomes
very steep at large , or in the theories where the inflaton field
nonminimally couples to gravity. Inflation with generally requires
intermediate first order phase transition with the bubble formation, and with a
second stage of inflation inside the bubble. It is possible to realize this
scenario in the context of a theory of one scalar field, but typically it
requires artificially bent effective potentials and/or nonminimal kinetic
terms. It is much easier to obtain an open universe in the models involving two
scalar fields. However, these models have their own specific problems. We
propose three different models of this type which can describe an open
homogeneous inflationary universe.Comment: 29 pages, LaTeX, parameters of one of the models are slightly
modifie
The weight for random quark masses
In theories in which the parameters of the low energy theory are not unique,
perhaps having different values in different domains of the universe as is
possible in some inflationary models, the fermion masses would be distributed
with respect to some weight. In such a situation the specifics of the fermion
masses do not have a unique explanation, yet the weight provides the visible
remnant of the structure of the underlying theory. This paper introduces this
concept of a weight for the distribution of masses and provides a quantitative
estimate of it from the observed quarks and leptons. The weight favors light
quark masses and appears roughly scale invariant (rho ~ 1/m). Some relevant
issues, such as the running of the weight with scale and the possible effects
of anthropic constraints, are also discussed.Comment: 35pages, 19 figure
Wave Function of a Brane-like Universe
Within the mini-superspace model, brane-like cosmology means performing the
variation with respect to the embedding (Minkowski) time before fixing
the cosmic (Einstein) time . The departure from Einstein limit is
parameterized by the 'energy' conjugate to , and characterized by a
classically disconnected Embryonic epoch. In contrast with canonical quantum
gravity, the wave-function of the brane-like Universe is (i) -dependent,
and (ii) vanishes at the Big Bang. Hartle-Hawking and Linde proposals dictate
discrete 'energy' levels, whereas Vilenkin proposal resembles -particle
disintegration.Comment: Revtex, 4 twocolumn pages, 3 eps figures (accepted for publication in
Class. Quan. Grav.
How does the geodesic rule really work for global symmetry breaking first order phase transitions?
The chain of events usually understood to lead to the formation of
topological defects during phase transitions is known as the Kibble mechanism.
A central component of the mechanism is the so-called ``geodesic rule''.
Although in the Abelian Higgs model the validity of the geodesic rule has been
questioned recently, it is known to be valid on energetic grounds for a global
U(1) symmetry breaking transition. However, even for these globally symmetric
models no dynamical analisys of the rule has been carried to this date, and
some points as to how events proceed still remain obscure. This paper tries to
clarify the dynamics of the geodesic rule in the context of a global U(1)
model. With an appropriate ansatz for the field modulus we find a family of
analytical expressions, phase walls, that accounts for both geodesic and
nongeodesic configurations. We then show how the latter ones are unstable and
decay into the former by nucleating pairs of defects. Finnally, we try to give
a physical perspective of how the geodesic rule might really work in these
transitions.Comment: 10 pages, 9 multiple figre
Quantum Creation of an Open Inflationary Universe
We discuss a dramatic difference between the description of the quantum
creation of an open universe using the Hartle-Hawking wave function and the
tunneling wave function. Recently Hawking and Turok have found that the
Hartle-Hawking wave function leads to a universe with Omega = 0.01, which is
much smaller that the observed value of Omega > 0.3. Galaxies in such a
universe would be about light years away from each other, so the
universe would be practically structureless. We will argue that the
Hartle-Hawking wave function does not describe the probability of the universe
creation. If one uses the tunneling wave function for the description of
creation of the universe, then in most inflationary models the universe should
have Omega = 1, which agrees with the standard expectation that inflation makes
the universe flat. The same result can be obtained in the theory of a
self-reproducing inflationary universe, independently of the issue of initial
conditions. However, there exist two classes of models where Omega may take any
value, from Omega > 1 to Omega << 1.Comment: 23 pages, 4 figures. New materials are added. In particular, we show
that boundary terms do not help to solve the problem of unacceptably small
Omega in the new model proposed by Hawking and Turok in hep-th/9803156. A
possibility to solve the cosmological constant problem in this model using
the tunneling wave function is discusse
Dynamics of Gravitating Magnetic Monopoles
According to previous work on magnetic monopoles, static regular solutions
are nonexistent if the vacuum expectation value of the Higgs field is
larger than a critical value , which is of the order of the
Planck mass. In order to understand the properties of monopoles for
, we investigate their dynamics numerically. If is
large enough (), a monopole expands exponentially and a
wormhole structure appears around it, regardless of coupling constants and
initial configuration. If is around , there are three
types of solutions, depending on coupling constants and initial configuration:
a monopole either expands as stated above, collapses into a black hole, or
comes to take a stable configuration.Comment: 11 pages, revtex, postscript figures; results for various initial
conditions are added; to appear in Phys. Rev.
STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY
In Brans-Dicke theory the Universe becomes divided after inflation into many
exponentially large domains with different values of the effective
gravitational constant. Such a process can be described by diffusion equations
for the probability of finding a certain value of the inflaton and dilaton
fields in a physical volume of the Universe. For a typical chaotic inflation
potential, the solutions for the probability distribution never become
stationary but grow forever towards larger values of the fields. We show here
that a non-minimal conformal coupling of the inflaton to the curvature scalar,
as well as radiative corrections to the effective potential, may provide a
dynamical cutoff and generate stationary solutions. We also analyze the
possibility of large nonperturbative jumps of the fluctuating inflaton scalar
field, which was recently revealed in the context of the Einstein theory. We
find that in the Brans--Dicke theory the amplitude of such jumps is strongly
suppressed.Comment: 19 pages, LaTe
Some Cosmological Implications of Hidden Sectors
We discuss some cosmological implications of extensions of the Standard Model
with hidden sector scalars coupled to the Higgs boson. We put special emphasis
on the conformal case, in which the electroweak symmetry is broken radiatively
with a Higgs mass above the experimental limit. Our refined analysis of the
electroweak phase transition in this kind of models strengthens the prediction
of a strongly first-order phase transition as required by electroweak
baryogenesis. We further study gravitational wave production and the
possibility of low-scale inflation as well as a viable dark matter candidate.Comment: 23 pages, 8 figures; some comments added, published versio
Uncertainties of predictions in models of eternal inflation
In a previous paper \cite{MakingPredictions}, a method of comparing the
volumes of thermalized regions in eternally inflating universe was introduced.
In this paper, we investigate the dependence of the results obtained through
that method on the choice of the time variable and factor ordering in the
diffusion equation that describes the evolution of eternally inflating
universes. It is shown, both analytically and numerically, that the variation
of the results due to factor ordering ambiguity inherent in the model is of the
same order as their variation due to the choice of the time variable.
Therefore, the results are, within their accuracy, free of the spurious
dependence on the time parametrization.Comment: 30 pages, RevTeX, figure included, added some references and Comments
on recent proposal (gr-qc/9511058) of alternative regularization schemes, to
appear in Phys. Rev.
- …