1,996 research outputs found
Location and Direction Dependent Effects in Collider Physics from Noncommutativity
We examine the leading order noncommutative corrections to the differential
and total cross sections for e+ e- --> q q-bar. After averaging over the
earth's rotation, the results depend on the latitude for the collider, as well
as the direction of the incoming beam. They also depend on scale and direction
of the noncommutativity. Using data from LEP, we exclude regions in the
parameter space spanned by the noncommutative scale and angle relative to the
earth's axis. We also investigate possible implications for phenomenology at
the future International Linear Collider.Comment: version to appear in PR
Neutrino-electron scattering in noncommutative space
Neutral particles can couple with the gauge field in the adjoint
representation at the tree level if the space-time coordinates are
noncommutative (NC). Considering neutrino-photon coupling in the NC QED
framework, we obtain the differential cross section of neutrino-electron
scattering. Similar to the magnetic moment effect, one of the NC terms is
proportional to , where is the electron recoil energy.
Therefore, this scattering provides a chance to achieve a stringent bound on
the NC scale in low energy by improving the sensitivity to the smaller electron
recoil energy.Comment: 12 pages, 2 figure
Constraining noncommutative field theories with holography
An important window to quantum gravity phenomena in low energy noncommutative
(NC) quantum field theories (QFTs) gets represented by a specific form of UV/IR
mixing. Yet another important window to quantum gravity, a holography,
manifests itself in effective QFTs as a distinct UV/IR connection. In matching
these two principles, a useful relationship connecting the UV cutoff
, the IR cutoff and the scale of
noncommutativity , can be obtained. We show that an effective
QFT endowed with both principles may not be capable to fit disparate
experimental bounds simultaneously, like the muon and the masslessness of
the photon. Also, the constraints from the muon preclude any possibility
to observe the birefringence of the vacuum coming from objects at cosmological
distances. On the other hand, in NC theories without the UV completion, where
the perturbative aspect of the theory (obtained by truncating a power series in
) becomes important, a heuristic estimate of the region
where the perturbative expansion is well-defined , gets affected when holography is applied by providing the energy of the
system a -dependent lower limit. This may affect models
which try to infer the scale by using data from low-energy
experiments.Comment: 4 pages, version to be published in JHE
Solving the Topological String on K3 Fibrations
We present solutions of the holomorphic anomaly equations for compact
two-parameter Calabi-Yau manifolds which are hypersurfaces in weighted
projective space. In particular we focus on K3-fibrations where due to
heterotic type II duality the topological invariants in the fibre direction are
encoded in certain modular forms. The formalism employed provides holomorphic
expansions of topological string amplitudes everywhere in moduli space.Comment: 60 pages, 1 figure, With an appendix by Sheldon Kat
Twisted supersymmetric 5D Yang-Mills theory and contact geometry
We extend the localization calculation of the 3D Chern-Simons partition
function over Seifert manifolds to an analogous calculation in five dimensions.
We construct a twisted version of N=1 supersymmetric Yang-Mills theory defined
on a circle bundle over a four dimensional symplectic manifold. The notion of
contact geometry plays a crucial role in the construction and we suggest a
generalization of the instanton equations to five dimensional contact
manifolds. Our main result is a calculation of the full perturbative partition
function on a five sphere for the twisted supersymmetric Yang-Mills theory with
different Chern-Simons couplings. The final answer is given in terms of a
matrix model. Our construction admits generalizations to higher dimensional
contact manifolds. This work is inspired by the work of Baulieu-Losev-Nekrasov
from the mid 90's, and in a way it is covariantization of their ideas for a
contact manifold.Comment: 28 pages; v2: minor mistake corrected; v3: matches published versio
Direct Integration and Non-Perturbative Effects in Matrix Models
We show how direct integration can be used to solve the closed amplitudes of
multi-cut matrix models with polynomial potentials. In the case of the cubic
matrix model, we give explicit expressions for the ring of non-holomorphic
modular objects that are needed to express all closed matrix model amplitudes.
This allows us to integrate the holomorphic anomaly equation up to holomorphic
modular terms that we fix by the gap condition up to genus four. There is an
one-dimensional submanifold of the moduli space in which the spectral curve
becomes the Seiberg--Witten curve and the ring reduces to the non-holomorphic
modular ring of the group . On that submanifold, the gap conditions
completely fix the holomorphic ambiguity and the model can be solved explicitly
to very high genus. We use these results to make precision tests of the
connection between the large order behavior of the 1/N expansion and
non-perturbative effects due to instantons. Finally, we argue that a full
understanding of the large genus asymptotics in the multi-cut case requires a
new class of non-perturbative sectors in the matrix model.Comment: 51 pages, 8 figure
GA-based heuristic algorithms for bandwidth-delay-constrained least-cost multicast routing
Abstract Th
TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams
We analyze , and processes within the
Seiberg-Witten expanded noncommutative scenario using polarized beams. With
unpolarized beams the leading order effects of non commutativity starts from
second order in non commutative(NC) parameter i.e. , while with
polarized beams these corrections appear at first order () in cross
section. The corrections in Compton case can probe the magnetic
component() while in Pair production and Pair annihilation
probe the electric component() of NC parameter. We include the
effects of earth rotation in our analysis. This study is done by investigating
the effects of non commutativity on different time averaged cross section
observables. The results which also depends on the position of the collider,
can provide clear and distinct signatures of the model testable at the
International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos
corrected, Published in JHE
Three Body Bound State in Non-Commutative Space
The Bethe-Salpeter equation in non-commutative QED (NCQED) is considered for
three-body bound state. We study the non-relativistic limit of this equation in
the instantaneous approximation and derive the corresponding Schr\"{o}dinger
equation in non-commutative space. It is shown that the experimental data for
Helium atom puts an upper bound on the magnitude of the parameter of
non-commutativity, .Comment: 10 pages, 3 figures, to appear in Phys. Rev.
Exact Results in ABJM Theory from Topological Strings
Recently, Kapustin, Willett and Yaakov have found, by using localization
techniques, that vacuum expectation values of Wilson loops in ABJM theory can
be calculated with a matrix model. We show that this matrix model is closely
related to Chern-Simons theory on a lens space with a gauge supergroup. This
theory has a topological string large N dual, and this makes possible to solve
the matrix model exactly in the large N expansion. In particular, we find the
exact expression for the vacuum expectation value of a 1/6 BPS Wilson loop in
the ABJM theory, as a function of the 't Hooft parameters, and in the planar
limit. This expression gives an exact interpolating function between the weak
and the strong coupling regimes. The behavior at strong coupling is in precise
agreement with the prediction of the AdS string dual. We also give explicit
results for the 1/2 BPS Wilson loop recently constructed by Drukker and
TrancanelliComment: 18 pages, two figures, small misprints corrected and references
added, final version to appear in JHE
- …