1,996 research outputs found

    Location and Direction Dependent Effects in Collider Physics from Noncommutativity

    Full text link
    We examine the leading order noncommutative corrections to the differential and total cross sections for e+ e- --> q q-bar. After averaging over the earth's rotation, the results depend on the latitude for the collider, as well as the direction of the incoming beam. They also depend on scale and direction of the noncommutativity. Using data from LEP, we exclude regions in the parameter space spanned by the noncommutative scale and angle relative to the earth's axis. We also investigate possible implications for phenomenology at the future International Linear Collider.Comment: version to appear in PR

    Neutrino-electron scattering in noncommutative space

    Full text link
    Neutral particles can couple with the U(1)U(1) gauge field in the adjoint representation at the tree level if the space-time coordinates are noncommutative (NC). Considering neutrino-photon coupling in the NC QED framework, we obtain the differential cross section of neutrino-electron scattering. Similar to the magnetic moment effect, one of the NC terms is proportional to 1T\frac 1 T, where TT is the electron recoil energy. Therefore, this scattering provides a chance to achieve a stringent bound on the NC scale in low energy by improving the sensitivity to the smaller electron recoil energy.Comment: 12 pages, 2 figure

    Constraining noncommutative field theories with holography

    Full text link
    An important window to quantum gravity phenomena in low energy noncommutative (NC) quantum field theories (QFTs) gets represented by a specific form of UV/IR mixing. Yet another important window to quantum gravity, a holography, manifests itself in effective QFTs as a distinct UV/IR connection. In matching these two principles, a useful relationship connecting the UV cutoff ΛUV\Lambda_{\rm UV}, the IR cutoff ΛIR\Lambda_{\rm IR} and the scale of noncommutativity ΛNC\Lambda_{\rm NC}, can be obtained. We show that an effective QFT endowed with both principles may not be capable to fit disparate experimental bounds simultaneously, like the muon g2g-2 and the masslessness of the photon. Also, the constraints from the muon g2g-2 preclude any possibility to observe the birefringence of the vacuum coming from objects at cosmological distances. On the other hand, in NC theories without the UV completion, where the perturbative aspect of the theory (obtained by truncating a power series in ΛNC2 \Lambda_{\rm NC}^{-2}) becomes important, a heuristic estimate of the region where the perturbative expansion is well-defined E/ΛNC1E/ \Lambda_{\rm NC} \lesssim 1, gets affected when holography is applied by providing the energy of the system EE a ΛNC\Lambda_{\rm NC}-dependent lower limit. This may affect models which try to infer the scale ΛNC\Lambda_{\rm NC} by using data from low-energy experiments.Comment: 4 pages, version to be published in JHE

    Solving the Topological String on K3 Fibrations

    Full text link
    We present solutions of the holomorphic anomaly equations for compact two-parameter Calabi-Yau manifolds which are hypersurfaces in weighted projective space. In particular we focus on K3-fibrations where due to heterotic type II duality the topological invariants in the fibre direction are encoded in certain modular forms. The formalism employed provides holomorphic expansions of topological string amplitudes everywhere in moduli space.Comment: 60 pages, 1 figure, With an appendix by Sheldon Kat

    Twisted supersymmetric 5D Yang-Mills theory and contact geometry

    Full text link
    We extend the localization calculation of the 3D Chern-Simons partition function over Seifert manifolds to an analogous calculation in five dimensions. We construct a twisted version of N=1 supersymmetric Yang-Mills theory defined on a circle bundle over a four dimensional symplectic manifold. The notion of contact geometry plays a crucial role in the construction and we suggest a generalization of the instanton equations to five dimensional contact manifolds. Our main result is a calculation of the full perturbative partition function on a five sphere for the twisted supersymmetric Yang-Mills theory with different Chern-Simons couplings. The final answer is given in terms of a matrix model. Our construction admits generalizations to higher dimensional contact manifolds. This work is inspired by the work of Baulieu-Losev-Nekrasov from the mid 90's, and in a way it is covariantization of their ideas for a contact manifold.Comment: 28 pages; v2: minor mistake corrected; v3: matches published versio

    Direct Integration and Non-Perturbative Effects in Matrix Models

    Full text link
    We show how direct integration can be used to solve the closed amplitudes of multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, we give explicit expressions for the ring of non-holomorphic modular objects that are needed to express all closed matrix model amplitudes. This allows us to integrate the holomorphic anomaly equation up to holomorphic modular terms that we fix by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg--Witten curve and the ring reduces to the non-holomorphic modular ring of the group Γ(2)\Gamma(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. We use these results to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, we argue that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model.Comment: 51 pages, 8 figure

    TeV Scale Implications of Non Commutative Space time in Laboratory Frame with Polarized Beams

    Full text link
    We analyze e+eγγe^{+}e^{-}\rightarrow \gamma\gamma, eγeγe^{-}\gamma \rightarrow e^{-}\gamma and γγe+e\gamma\gamma \rightarrow e^{+}e^{-} processes within the Seiberg-Witten expanded noncommutative scenario using polarized beams. With unpolarized beams the leading order effects of non commutativity starts from second order in non commutative(NC) parameter i.e. O(Θ2)O(\Theta^2), while with polarized beams these corrections appear at first order (O(Θ)O(\Theta)) in cross section. The corrections in Compton case can probe the magnetic component(ΘB\vec{\Theta}_B) while in Pair production and Pair annihilation probe the electric component(ΘE\vec{\Theta}_E) of NC parameter. We include the effects of earth rotation in our analysis. This study is done by investigating the effects of non commutativity on different time averaged cross section observables. The results which also depends on the position of the collider, can provide clear and distinct signatures of the model testable at the International Linear Collider(ILC).Comment: 22 pages, 19 figures, new comments and references added, few typos corrected, Published in JHE

    Three Body Bound State in Non-Commutative Space

    Full text link
    The Bethe-Salpeter equation in non-commutative QED (NCQED) is considered for three-body bound state. We study the non-relativistic limit of this equation in the instantaneous approximation and derive the corresponding Schr\"{o}dinger equation in non-commutative space. It is shown that the experimental data for Helium atom puts an upper bound on the magnitude of the parameter of non-commutativity, θ109λe2\theta\sim10^{-9}\lambda_e^2.Comment: 10 pages, 3 figures, to appear in Phys. Rev.

    Exact Results in ABJM Theory from Topological Strings

    Full text link
    Recently, Kapustin, Willett and Yaakov have found, by using localization techniques, that vacuum expectation values of Wilson loops in ABJM theory can be calculated with a matrix model. We show that this matrix model is closely related to Chern-Simons theory on a lens space with a gauge supergroup. This theory has a topological string large N dual, and this makes possible to solve the matrix model exactly in the large N expansion. In particular, we find the exact expression for the vacuum expectation value of a 1/6 BPS Wilson loop in the ABJM theory, as a function of the 't Hooft parameters, and in the planar limit. This expression gives an exact interpolating function between the weak and the strong coupling regimes. The behavior at strong coupling is in precise agreement with the prediction of the AdS string dual. We also give explicit results for the 1/2 BPS Wilson loop recently constructed by Drukker and TrancanelliComment: 18 pages, two figures, small misprints corrected and references added, final version to appear in JHE
    corecore