658 research outputs found

    Role of Phase Variables in Quarter-Filled Spin Density Wave States

    Full text link
    Several kinds of spin density wave (SDW) states with both quarter-filled band and dimerization are reexamined for a one-dimensional system with on-site, nearest-neighbor and next-nearest-neighbor repulsive interactions, which has been investigated by Kobayashi et al. (J. Phys. Soc. Jpn. 67 (1998) 1098). Within the mean-field theory, the ground state and the response to the density variation are calculated in terms of phase variables, θ\theta and ϕ\phi, where θ\theta expresses the charge fluctuation of SDW and ϕ\phi describes the relative motion between density wave with up spin and that with down spin respectively. It is shown that the exotic state of coexistence of 2k_F-SDW and 2k_F-charge density wave (CDW) is followed by 4k_F-SDW but not by 4k_F-CDW where k_F denotes a Fermi wave vector. The harmonic potential with respect to the variation of θ\theta and/or ϕ\phi disappears for the interactions, which lead to the boundary between the pure 2k_F-SDW state and the corresponding coexistent state.Comment: 9 pages, 15 figures, to be published in J. Phys. Soc. Jpn. 69 No.3 (2000) 79

    Ab initio derivation of multi-orbital extended Hubbard model for molecular crystals

    Full text link
    From configuration interaction (CI) ab initio calculations, we derive an effective two-orbital extended Hubbard model based on the gerade (g) and ungerade (u) molecular orbitals (MOs) of the charge-transfer molecular conductor (TTM-TTP)I_3 and the single-component molecular conductor [Au(tmdt)_2]. First, by focusing on the isolated molecule, we determine the parameters for the model Hamiltonian so as to reproduce the CI Hamiltonian matrix. Next, we extend the analysis to two neighboring molecule pairs in the crystal and we perform similar calculations to evaluate the inter-molecular interactions. From the resulting tight-binding parameters, we analyze the band structure to confirm that two bands overlap and mix in together, supporting the multi-band feature. Furthermore, using a fragment decomposition, we derive the effective model based on the fragment MOs and show that the staking TTM-TTP molecules can be described by the zig-zag two-leg ladder with the inter-molecular transfer integral being larger than the intra-fragment transfer integral within the molecule. The inter-site interactions between the fragments follow a Coulomb law, supporting the fragment decomposition strategy.Comment: 16 pages, 8 figures, published versio

    Alternative formalism to the slave particle mean field theory of the t-J model without deconfinement

    Full text link
    An alternative formalism that does not require the assumption of the deconfinement phase of a U(1) gauge field is proposed for the slave particle mean field theory. Starting form the spin-fermion model, a spinon field, which is either fermion or boson, is introduced to represent the localized spin moment. We find a d-wave superconductive state in the mean field theory in the case of the fermion representation of the localized spin moment that corresponds to the slave boson mean field theory of the t-J model, whereas the d-wave superconductive state is absent in case of the Schwinger boson representation of the localized spin moments.Comment: 8 page

    Effect of nearest- and next-nearest neighbor interactions on the spin-wave velocity of one-dimensional quarter-filled spin-density-wave conductors

    Full text link
    We study spin fluctuations in quarter-filled one-dimensional spin-density-wave systems in presence of short-range Coulomb interactions. By applying a path integral method, the spin-wave velocity is calculated as a function of on-site (U), nearest (V) and next-nearest (V_2) neighbor-site interactions. With increasing V or V_2, the pure spin-density-wave state evolves into a state with coexisting spin- and charge-density waves. The spin-wave velocity is reduced when several density waves coexist in the ground state, and may even vanish at large V. The effect of dimerization along the chain is also considered.Comment: REVTeX, 11 pages, 9 figure

    Interplay between phase defects and spin polarization in the specific heat of the spin density wave compound (TMTTF)_2Br in a magnetic field

    Full text link
    Equilibrium heat relaxation experiments provide evidence that the ground state of the commensurate spin density wave (SDW) compound (TMTTF)2_2Br after the application of a sufficient magnetic field is different from the conventional ground state. The experiments are interpreted on the basis of the local model of strong pinning as the deconfinement of soliton-antisoliton pairs triggered by the Zeeman coupling to spin degrees of freedom, resulting in a magnetic field induced density wave glass for the spin carrying phase configuration.Comment: 4 pages, 5 figure

    Magnetic response and quantum critical behavior in the doped two-leg extended Hubbard ladder

    Full text link
    We have investigated quantum critical behavior in the doped two-leg extended Hubbard ladder, by using a weak-coupling bosonization method. In the ground state, the dominant fluctuation changes from the conventional d-wave-like superconducting (SCd) state into density-wave states, with increasing nearest-neighbor repulsions and/or decreasing doping rate. The competition between the SCd state and the charge-density-wave state coexisting with the p-density-wave state becomes noticeable on the critical point, at which the gap for magnetic excitations vanishes. Based on the Majorana-fermion description of the effective theory, we calculate the temperature dependence of the magnetic response such as the spin susceptibility and the NMR relaxation rate, which exhibit unusual properties due to two kinds of spin excitation modes. On the quantum critical point, the spin susceptibility shows paramagnetic behavior with logarithmic corrections and the NMR relaxation rate also exhibits anomalous power-law behavior. We discuss the commensurability effect due to the umklapp scattering and relevance to the two-leg ladder compounds Sr_{14-x}Ca_xCu_{24}O_{41}.Comment: 18 pages, 9 figures, accepted for publication in Phys. Rev.

    Role of Collective Mode for Optical Conductivity and Reflectivity in Quarter-Filled Spin-Density-Wave State

    Full text link
    Taking account of a collective mode relevant to charge fluctuation, the optical conductivity of spin-density-wave state has been examined for an extended Hubbard model with one-dimensional quarter-filled band. We find that, within the random phase approximation, the conductivity exhibits several peaks at the frequency corresponding to the excitation energy of the commensurate collective mode. When charge ordering appears with increasing inter-site repulsive interactions, the main peak with the lowest frequency is reduced and the effective mass of the mode is enhanced indicating the suppression of the effect of the collective mode by charge ordering. It is also shown that the reflectivity becomes large in a wide range of frequency due to the huge dielectric constant induced by the collective mode.Comment: 11 pages, 16 figure

    Nonuniversal spectral properties of the Luttinger model

    Full text link
    The one electron spectral functions for the Luttinger model are discussed for large but finite systems. The methods presented allow a simple interpretation of the results. For finite range interactions interesting nonunivesal spectral features emerge for momenta which differ from the Fermi points by the order of the inverse interaction range or more. For a simplified model with interactions only within the branches of right and left moving electrons analytical expressions for the spectral function are presented which allows to perform the thermodynamic limit. As in the general spinless model and the model including spin for which we present mainly numerical results the spectral functions do not approach the noninteracting limit for large momenta. The implication of our results for recent high resolution photoemission measurements on quasi one-dimensional conductors are discussed.Comment: 19 pages, Revtex 2.0, 5 ps-figures, to be mailed on reques

    Emergence of Dirac Electron Pair in Charge Ordered State of Organic Conductor α\alpha-(BEDT-TTF)2_2I3_3

    Full text link
    We re-examine the band structure of the stripe charge ordered state of α\alpha-(BEDT-TTF)2_2I3_3 under pressure by using an extended Hubbard model within the Hartree mean-field theory. By increasing pressure, we find a topological transition from a conventional insulator with a single-minimum in the dispersion relation at the M-point in the Brillouin zone, towards a new phase which exhibits a double-minimum. This transition is characterized by the appearance of a pair of Dirac electrons with a finite mass. Using the Luttinger-Kohn representation at the M-point, it is shown that such a variation of the band structure can be described by an effective 2×22 \times 2 low energy Hamiltonian with a single driving parameter. The topological nature of this transition is confirmed by the calculation of the Berry curvature which vanishes in the conventional phase and has a double peak structure with opposite signs in the new phase. We compare the structure of this transition with a simpler situation which occurs in two-component systems, like boron-nitride.Comment: 12 pages, 14 figure

    Confinement-deconfinement transition in two-coupled chains with umklapp scattering

    Full text link
    A role of umklapp scattering has been examined for two-coupled chains with both forward and backward scatterings by applying renormalization group method to bosonized Hamiltonian. It has been found that a state with relevant interchain hopping changes into a state with irrelevant (confined) one when the magnitude of umklapp scattering becomes larger than that of interchain hopping. Critical value of umklapp scattering for such a confinement-deconfinement transition is calculated as the function of interchain hopping and intrachain interactions. A crossover from one-dimensional regime into that of coupled chains is also shown with decreasing temperature.Comment: 13 pages, 7 figures, to be published in Phys. Rev.
    • …
    corecore