62 research outputs found

    Transition-Metal-Doped alpha-MnO2 Nanorods as Bifunctional Catalysts for Efficient Oxygen Reduction and Evolution Reactions

    Get PDF
    Nano‐sized α‐MnO2 nanorods doped with Co or Ru were directly synthesized using a continuous hydrothermal synthesis process (production rate 10 g h−1) and investigated as relatively inexpensive (due to the small Ru content) bifunctional catalysts for both the Oxygen Reduction Reaction (ORR) and Oxygen Evolution Reaction (OER). The materials were extensively characterized using a range of analytical methods; these including Extended X‐Ray Absorption Fine Structure (EXAFS) spectroscopy measurements, which was accompanied by density functional theory studies, in order to elucidate the role of dopants in α‐MnO2 structure. Electrochemical ORR and OER investigations of the as‐prepared doped α‐MnO2 nanomaterials were compared to more expensive Pt/C or RuO2 catalysts. The doped manganese oxide nanomaterials were used as bifunctional catalysts in the positive electrode of zinc air batteries (with oversized zinc metal negative electrode and limited density of discharge window) and displayed excellent performance (the overpotential was 0.77 and 0.68 V for α‐MnO2 modified with 7.6 at% Co and 9.4 at% Ru, respectively). Overall, as a result of doping, this study achieved improved bifunctional catalytic activities of metal oxide catalysts, which was comparable to more expensive alternatives

    Nanostructured Perovskite LaCo

    No full text

    Bifunctionally active nanosized spinel cobalt nickel sulfides for sustainable secondary zinc-air batteries: examining the effects of compositional tuning on OER and ORR activity

    No full text
    A range of compositionally-tuned nanosized cobalt nickel sulfides (125 cycles) and a decent power density of 87 mW cm−2 at 150 mA cm−2 in zinc–air batteries. The electrochemical study of the series of cobalt nickel sulfides made herein suggests that a high electronic conductivity is responsible for the high bifunctional performance, with Ni(III) being identified as a contributor to the OER, while Co(II) and Ni(II) are identified as contributors to the ORR activity. These cathode materials would be highly suitable for safe, sustainable, and long-life zinc–air secondary batteries

    Enhancing bifunctional catalytic activity of cobalt-nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc-air batteries

    No full text
    Developing large-scale and high-performance OER (oxygen evolution reaction) and ORR (oxygen reduction reaction) catalysts have been a challenge for commercializing secondary zinc-air batteries. In this work, transition metal-doped cobalt-nickel sulfide spinels are directly produced via a continuous hydrothermal flow synthesis (CHFS) approach. The nanosized cobalt-nickel sulfides are doped with Ag, Fe, Mn, Cr, V, and Ti and evaluated as bifunctional OER and ORR catalyst for Zn-air battery application. Among the doped spinel catalysts, Mn-doped cobalt-nickel sulfides (Ni1.29Co1.49Mn0.22S4) exhibit the most promising OER and ORR performance, showing an ORR onset potential of 0.9 V vs. RHE and an OER overpotential of 348 mV measured at 10 mA cm-2, which is attributed to their high surface area, electronic structure of the dopant species, and the synergistic coupling of the dopant species with the active host cations. The dopant ions primarily alter the host cation composition, with the Mn(iii) cation linked to the introduction of active sites by its favourable electronic structure. A power density of 75 mW cm-2 is achieved at a current density of 140 mA cm-2 for the zinc-air battery using the manganese-doped catalyst, a 12% improvement over the undoped cobalt-nickel sulfide and superior to that of the battery with a commercial RuO2 catalyst

    Nanostructured Perovskite LaCo1-xMnxO3 as Bifunctional Catalysts for Rechargeable Metal-Air Batteries

    No full text
    Bifunctional catalyst that is active for both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is one of the most important components of rechargeable metal-air batteries. Nanostructured perovskite bifunctional catalysts comprising La, Co and Mn (LaCo1-xMnxO3, LCMO) are synthesized by hydrothermal methods. The morphology, structure and electrochemical activity of the perovskite bifunctional catalysts are characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and rotating disk electrode (RDE) techniques. Nanorod, nanodisc and nanoparticle are typical morphologies of LCMO. The electrocatalytic activity of LCMO is significantly improved by the addition of conductive materials such as carbon nanotube. To demonstrate the practical utilization, LCMO in the composition of LaCo0.8Mn0.2O3 (LCMO82) is used as air cathode catalysts for rechargeable zinc-air batteries. The battery prototype can sustain 470 h or 40 discharge-charge cycles equivalent.link_to_subscribed_fulltex

    FeCo Nanoparticle-Loaded Nutshell-Derived Porous Carbon as Sustainable Catalyst in Al-Air Batteries

    No full text
    Developing a high-performance ORR (oxygen reduction reaction) catalyst at low cost has been a challenge for the commercialization of high-energy density and low production cost aluminium-air batteries. Herein, we report a catalyst, prepared by pyrolyzing the shell waste of peanut or pistachio, followed by concurrent nitrogen-doping and FeCo alloy nanoparticle loading. Large surface area (1246.4 m2 g-1) of pistachio shell-derived carbon can be obtained by combining physical and chemical treatments of the biomass. Such a large surface area carbon eases nitrogen doping and provides more nucleation sites for FeCo alloy growth, furnishing the resultant catalyst (FeCo/N-C-Pistachio) with higher content of N, Fe, and Co with a larger electrochemically active surface area as compared to its peanut shell counterpart (FeCo/N-C-Peanut). The FeCo/N-C-Pistachio displays a promising onset potential of 0.93 V vs. RHE and a high saturating current density of 4.49 mA cm-2, suggesting its high ORR activity. An aluminium-air battery, with FeCo/N-C-Pistachio catalyst on the cathode and coupled with a commercial aluminium 1100 anode, delivers a power density of 99.7 mW cm-2 and a stable discharge voltage at 1.37 V over 5 h of operation. This high-performance, low-cost, and environmentally sustainable electrocatalyst shows potential for large-scale adoption of aluminium-air batteries
    corecore