324 research outputs found

    Media in the Peace-Building Process: Ethiopia and Iraq

    Get PDF
    Within the broad context of the major issues facing the international development community, Public Sentinel: News Media & Governance Reform focuses on the performance of the news media as an institution in addressing the challenges of governance. The book seeks to consider three related issues: What ideal roles should media systems play to strengthen democratic governance and thus bolster human development? Under what conditions do media systems actually succeed or fail to fulfill these objectives? What policy interventions work most effectively to close the substantial gap which exists between the democratic promise and performance of the news media as an institution

    Press and consolidation of power in Ethiopia and Uganda.

    Get PDF
    Guerrilla commanders Yoweri Museveni of Uganda and Ethiopia's Meles Zenawi seized power in 1986 and 1991. Both made press freedom a prominent and credible policy to differentiate themselves from their predecessors in seeking domestic and international support in their efforts to consolidate power. Nevertheless, each still presides over a highly centralized autocratic regime, with limited opportunities for political contenders to contest free and fair national elections. There are, however, important differences. In Uganda the press has remained vibrant and open despite 2006 election tensions, while in Ethiopia much of the private press was dramatically closed after the 2005 electoral contests. Why the press has evolved differently in Ethiopia than in Uganda and what the role of the press has been under the current systems are core questions to be addressed in this research. In neither country can the media be studied separately from politics. The analytic framework of the thesis therefore highlights four key political variables, as well as four key media variables. The selected media variables are: the polarisation of the press; ideologies of journalists; institutionalisation of the press; and government interventions; and the selected political variables are: the ideology of the liberation movement; the process of state construction and the consolidation of power; reconciliation, trust and confidence building; and international dimensions. Each case study also includes a brief history highlighting the differences in the earlier development of the press in Ethiopia and Uganda. Because of the dearth of existing literature, the thesis has built on comparative literature from other regions and has relied on extensive field research, including semi-structured interviews and oral histories with key political and media actors for what is one of the first substantial pieces of research examining the press in contemporary Ethiopia and Uganda. The argument that emerges from this analysis is that the press can play an important role in building peace, encouraging reconciliation and facilitating dialogue in the aftermath of civil wars. It primarily does so through providing a space for different elite factions to negotiate power, reconcile competing versions of history and build a common national vision. This process has developed differently in Ethiopia and Uganda and accounts for some current discrepancies in their political and press systems

    Assisted evolution enables HIV-1 to overcome a high trim5Ξ±-imposed genetic barrier to rhesus macaque tropism

    Get PDF
    Diversification of antiretroviral factors during host evolution has erected formidable barriers to cross-species retrovirus transmission. This phenomenon likely protects humans from infection by many modern retroviruses, but it has also impaired the development of primate models of HIV-1 infection. Indeed, rhesus macaques are resistant to HIV-1, in part due to restriction imposed by the TRIM5Ξ± protein (rhTRIM5Ξ±). Initially, we attempted to derive rhTRIM5Ξ±-resistant HIV-1 strains using two strategies. First, HIV-1 was passaged in engineered human cells expressing rhTRIM5Ξ±. Second, a library of randomly mutagenized capsid protein (CA) sequences was screened for mutations that reduced rhTRIM5Ξ± sensitivity. Both approaches identified several individual mutations in CA that reduced rhTRIM5Ξ± sensitivity. However, neither approach yielded mutants that were fully resistant, perhaps because the locations of the mutations suggested that TRIM5Ξ± recognizes multiple determinants on the capsid surface. Moreover, even though additive effects of various CA mutations on HIV-1 resistance to rhTRIM5Ξ± were observed, combinations that gave full resistance were highly detrimental to fitness. Therefore, we employed an 'assisted evolution' approach in which individual CA mutations that reduced rhTRIM5Ξ± sensitivity without fitness penalties were randomly assorted in a library of viral clones containing synthetic CA sequences. Subsequent passage of the viral library in rhTRIM5Ξ±-expressing cells resulted in the selection of individual viral species that were fully fit and resistant to rhTRIM5Ξ±. These viruses encoded combinations of five mutations in CA that conferred complete or near complete resistance to the disruptive effects of rhTRIM5Ξ± on incoming viral cores, by abolishing recognition of the viral capsid. Importantly, HIV-1 variants encoding these CA substitutions and SIVmac239 Vif replicated efficiently in primary rhesus macaque lymphocytes. These findings demonstrate that rhTRIM5Ξ± is difficult to but not impossible to evade, and doing so should facilitate the development of primate models of HIV-1 infection

    Rhesus TRIM5Ξ± disrupts the HIV-1 capsid at the inter-hexamer interfaces

    Get PDF
    TRIM proteins play important roles in the innate immune defense against retroviral infection, including human immunodeficiency virus type-1 (HIV-1). Rhesus macaque TRIM5Ξ± (TRIM5Ξ±rh) targets the HIV-1 capsid and blocks infection at an early post-entry stage, prior to reverse transcription. Studies have shown that binding of TRIM5Ξ± to the assembled capsid is essential for restriction and requires the coiled-coil and B30.2/SPRY domains, but the molecular mechanism of restriction is not fully understood. In this study, we investigated, by cryoEM combined with mutagenesis and chemical cross-linking, the direct interactions between HIV-1 capsid protein (CA) assemblies and purified TRIM5Ξ±rh containing coiled-coil and SPRY domains (CC-SPRYrh). Concentration-dependent binding of CC-SPRYrh to CA assemblies was observed, while under equivalent conditions the human protein did not bind. Importantly, CC-SPRYrh, but not its human counterpart, disrupted CA tubes in a non-random fashion, releasing fragments of protofilaments consisting of CA hexamers without dissociation into monomers. Furthermore, such structural destruction was prevented by inter-hexamer crosslinking using P207C/T216C mutant CA with disulfide bonds at the CTD-CTD trimer interface of capsid assemblies, but not by intra-hexamer crosslinking via A14C/E45C at the NTD-NTD interface. The same disruption effect by TRIM5Ξ±rh on the inter-hexamer interfaces also occurred with purified intact HIV-1 cores. These results provide insights concerning how TRIM5Ξ± disrupts the virion core and demonstrate that structural damage of the viral capsid by TRIM5Ξ± is likely one of the important components of the mechanism of TRIM5Ξ±-mediated HIV-1 restriction. Β© 2011 Zhao et al

    Conformational adaptation of Asian macaque TRIMCyp directs lineage specific antiviral activity

    Get PDF
    TRIMCyps are anti-retroviral proteins that have arisen independently in New World and Old World primates. All TRIMCyps comprise a CypA domain fused to the tripartite domains of TRIM5Ξ± but they have distinct lentiviral specificities, conferring HIV-1 restriction in New World owl monkeys and HIV-2 restriction in Old World rhesus macaques. Here we provide evidence that Asian macaque TRIMCyps have acquired changes that switch restriction specificity between different lentiviral lineages, resulting in species-specific alleles that target different viruses. Structural, thermodynamic and viral restriction analysis suggests that a single mutation in the Cyp domain, R69H, occurred early in macaque TRIMCyp evolution, expanding restriction specificity to the lentiviral lineages found in African green monkeys, sooty mangabeys and chimpanzees. Subsequent mutations have enhanced restriction to particular viruses but at the cost of broad specificity. We reveal how specificity is altered by a scaffold mutation, E143K, that modifies surface electrostatics and propagates conformational changes into the active site. Our results suggest that lentiviruses may have been important pathogens in Asian macaques despite the fact that there are no reported lentiviral infections in current macaque populations

    A Single Amino Acid of Human Immunodeficiency Virus Type 2 Capsid Protein Affects Conformation of Two External Loops and Viral Sensitivity to TRIM5Ξ±

    Get PDF
    We previously reported that human immunodeficiency virus type 2 (HIV-2) carrying alanine or glutamine but not proline at position 120 of the capsid protein (CA) could grow in the presence of anti-viral factor TRIM5Ξ± of cynomolgus monkey (CM). To elucidate details of the interaction between the CA and TRIM5Ξ±, we generated mutant HIV-2 viruses, each carrying one of the remaining 17 possible amino acid residues, and examined their sensitivity to CM TRIM5Ξ±-mediated restriction. Results showed that hydrophobic residues or those with ring structures were associated with sensitivity, while those with small side chains or amide groups conferred resistance. Molecular dynamics simulation study revealed a structural basis for the differential TRIM5Ξ± sensitivities. The mutations at position 120 in the loop between helices 6 and 7 (L6/7) affected conformation of the neighboring loop between helices 4 and 5 (L4/5), and sensitive viruses had a common L4/5 conformation. In addition, the common L4/5 structures of the sensitive viruses were associated with a decreased probability of hydrogen bond formation between the 97th aspartic acid in L4/5 and the 119th arginine in L6/7. When we introduced aspartic acid-to-alanine substitution at position 97 (D97A) of the resistant virus carrying glutamine at position 120 to disrupt hydrogen bond formation, the resultant virus became moderately sensitive. Interestingly, the virus carrying glutamic acid at position 120 showed resistance, while its predicted L4/5 conformation was similar to those of sensitive viruses. The D97A substitution failed to alter the resistance of this particular virus, indicating that the 120th amino acid residue itself is also involved in sensitivity regardless of the L4/5 conformation. These results suggested that a hydrogen bond between the L4/5 and L6/7 modulates the overall structure of the exposed surface of the CA, but the amino acid residue at position 120 is also directly involved in CM TRIM5Ξ± recognition

    Variability in a dominant block to SIV early reverse transcription in rhesus monkey cells predicts in vivo viral replication and time to death

    Get PDF
    While it has long been appreciated that there is considerable variability in host containment of HIV/SIV replication, the determinants of that variability are not fully understood. Previous studies demonstrated that the degree of permissivity of a macaque's peripheral blood mononuclear cells (PBMC) for infection with simian immunodeficiency virus (SIV) in vitro predicted that animal's peak plasma virus RNA levels following SIV infection in vivo. The present study was conducted to define the mechanisms underlying the variable intrinsic susceptibility of rhesus monkey PBMC to SIVsmE660 infection. In a cohort of 15 unrelated Indian-origin rhesus monkeys, infectability of PBMC of individual animals with SIVsmE660, as defined by tissue culture infectious dose (TCID50), varied by more than 3 logs and was a stable phenotype over time. Susceptibility of a monkey's PBMC to wild type SIVsmE660 infection correlated with the susceptibility of that monkey's PBMC to infection with VSV-G pseudotyped SIVsm543-GFP. Moreover, the permissivity of an individual monkey's PBMC for infection with this construct correlated with the permissivity of a B-lymphoblastoid cell line (B-LCL) generated from PBMC of the same animal. We found that the degree of intrinsic resistance of monkey B-LCL correlated with the copy number of early reverse transcription (ERT) SIV DNA. The resistance of monkey B-LCL to SIVsmE660 replication could be abrogated by preincubation of cells with the SIV virus-like particles (VLPs) and SIV resistance phenotype could be transferred to a SIV susceptible B-LCL through cell fusion. Finally, we observed a positive correlation between susceptibility of monkey B-LCL to SIV infection with a VSV-G pseudotyped SIV-GFP construct in vitro and both the peak plasma virus RNA levels in vivo and time to death following wild type SIV infection. These findings suggest that a dominant early RT restricting factor that can be saturated by SIV capsid may contribute to the variable resistance to SIV infection in rhesus monkey B-LCL and that this differential intrinsic susceptibility contributes to the clinical outcome of an SIV infection

    Enacting a Culture of Access in Our Conference Spaces

    Get PDF
    The article offers information on periodical\u27s rhetoric and writing studies conference held in September 2020. Topics discussed include prioritizing access in the service of love, justice, connection and liberation; proposing expansive frameworks for access in designing accessible writing classrooms and professional events; and major principles of definition of access, which reflect access\u27s complexity and liberatory potential such as dynamic, relational and intersectional

    Evolution of the Antiretroviral Restriction Factor TRIMCyp in Old World Primates

    Get PDF
    The retroviral restriction factor TRIMCyp, which is a fusion protein derived from the TRIM5 gene, blocks replication at a post-entry step. Among Old World primates, TRIMCyp has been found in four species of Asian macaques, but not in African monkeys. To further define the evolutionary origin of Old World TRIMCyp, we examined two species of baboons (genus Papio) and three additional macaque species, including M. sylvanus, which is the only macaque species found outside Asia, and represents the earliest diverging branch of the macaque lineage. None of four P. cynocephalus anubis, one P. hamadryas, and 36 M. sylvanus had either TRIMCyp mRNA or the genetic features required for its expression. M. sylvanus genomic sequences indicated that the lack of TRIMCyp in this species was not due to genetic homogeneity among specimens studied and revealed the existence of four TRIM5Ξ± alleles, all distinct from M. mulatta and Papio counterparts. Together with existing data on macaque evolution, our findings indicate that TRIMCyp evolved in the ancestors of Asian macaques approximately 5–6 million years before present (ybp), likely as a result of a retroviral threat. TRIMCyp then became fixed in the M. nemestrina lineage after it diverged from M. nigra, approximately 2 million ybp. The macaque lineage is unique among primates studied so far due to the presence and diversity of both TRIM5 and TRIMCyp restriction factors. Studies of these antiviral proteins may provide valuable information about natural antiviral mechanisms, and give further insight into the factors that shaped the evolution of macaque species
    • …
    corecore