298 research outputs found

    Nernst effect in the phase-fluctuating superconductor InOx_x

    Full text link
    We present a study of the Nernst effect in amorphous 2D superconductor InOx_x, whose low carrier density implies low phase rigidity and strong superconducting phase fluctuations. Instead of presenting the abrupt jump expected at a BCS transition, the Nernst signal evolves continuously through the superconducting transition as previously observed in underdoped cuprates. This contrasts with the case of Nb0.15_{0.15}Si0.85_{0.85}, where the Nernst signal due to vortices below Tc_{c} and by Gaussian fluctuations above are clearly distinct. The behavior of the ghost critical field in InOx_x points to a correlation length which does not diverge at TcT_c, a temperature below which the amplitude fluctuations freeze, but phase fluctuations survive.Comment: 4 pages, 4 figure

    Use of Salivary Diurnal Cortisol as an Outcome Measure in Randomised Controlled Trials: a Systematic Review.

    Get PDF
    BACKGROUND: Dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis is associated with diverse adverse health outcomes, making it an important therapeutic target. Measurement of the diurnal rhythm of cortisol secretion provides a window into this system. At present, no guidelines exist for the optimal use of this biomarker within randomised controlled trials (RCTs). PURPOSE: The aim of this study is to describe the ways in which salivary diurnal cortisol has been measured within RCTs of health or behavioural interventions in adults. METHODS: Six electronic databases (up to May 21, 2015) were systematically searched for RCTs which used salivary diurnal cortisol as an outcome measure to evaluate health or behavioural interventions in adults. A narrative synthesis was undertaken of the findings in relation to salivary cortisol methodology and outcomes. RESULTS: From 78 studies that fulfilled the inclusion criteria, 30 included healthy participants (38.5 %), 27 included patients with physical disease (34.6 %) and 21 included patients with psychiatric disease (26.9 %). Psychological therapies were most commonly evaluated (n = 33, 42.3 %). There was substantial heterogeneity across studies in relation to saliva collection protocols and reported cortisol parameters. Only 39 studies (50 %) calculated a rhythm parameter such as the diurnal slope or the cortisol awakening response (CAR). Patterns of change in cortisol parameters were inconsistent both within and across studies and there was low agreement with clinical findings. CONCLUSIONS: Salivary diurnal cortisol is measured inconsistently across RCTs, which is limiting the interpretation of findings within and across studies. This indicates a need for more validation work, along with consensus guidelines.Dr. Ryan is funded by a National Institute for Health Research (NIHR) Doctoral Research Fellowship Programme Award in the UK. The views expressed are those of the authors and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health.This is the final version of the article. It first appeared from Springer via https://doi.org/10.1007/s12160-015-9753-

    Nernst effect as a probe of superconducting fluctuations in disordered thin films

    Full text link
    In amorphous superconducting thin films of Nb0.15Si0.85Nb_{0.15}Si_{0.85} and InOxInO_x, a finite Nernst coefficient can be detected in a wide range of temperature and magnetic field. Due to the negligible contribution of normal quasi-particles, superconducting fluctuations easily dominate the Nernst response in the entire range of study. In the vicinity of the critical temperature and in the zero-field limit, the magnitude of the signal is in quantitative agreement with what is theoretically expected for the Gaussian fluctuations of the superconducting order parameter. Even at higher temperatures and finite magnetic field, the Nernst coefficient is set by the size of superconducting fluctuations. The Nernst coefficient emerges as a direct probe of the ghost critical field, the normal-state mirror of the upper critical field. Moreover, upon leaving the normal state with fluctuating Cooper pairs, we show that the temperature evolution of the Nernst coefficient is different whether the system enters a vortex solid, a vortex liquid or a phase-fluctuating superconducting regime.Comment: Submitted to New. J. Phys. for a focus issue on "Superconductors with Exotic Symmetries

    Management Accountant's Role and Functions in the Enterprise Resource Planning Environment - Author's Own Research into Enterprises in Poland

    Get PDF
    This article seeks to answer whether the implementation of an ERP system has an effect on the management accountant's tasks and functions, especially in the field of performance measurement and internal reporting. The ERP impacts on the controller's role in the organization will be evaluated using field studies on six enterprises owned by multinational corporations. The question that should be asked here is whether controller's functions and tasks will also be unaffected.Celem badania jest próba odpowiedzi na pytanie czy zastosowanie zintegrowanego systemu informatycznego w przedsiębiorstwie zmienia zadania i funkcje specjalisty do spraw rachunkowości zarządczej. Na podstawie studium przypadku sześciu przedsiębiorstw będących częścią koncernów międzynarodowych zostaje dokonana ocena wpływu zastosowania ERP na rolę kontrolera w organizacji. Autor odpowiada również na pytanie czy w funkcjach i zadaniach kontrolera nie zaobserwowane zostaną zmiany w związku z implementacją ERP

    Exploring Automatic Diagnosis of COVID-19 from Crowdsourced Respiratory Sound Data

    Get PDF
    Audio signals generated by the human body (e.g., sighs, breathing, heart, digestion, vibration sounds) have routinely been used by clinicians as indicators to diagnose disease or assess disease pro- gression. Until recently, such signals were usually collected through manual auscultation at scheduled visits. Research has now started to use digital technology to gather bodily sounds (e.g., from dig- ital stethoscopes) for cardiovascular or respiratory examination, which could then be used for automatic analysis. Some initial work shows promise in detecting diagnostic signals of COVID-19 from voice and coughs. In this paper we describe our data analysis over a large-scale crowdsourced dataset of respiratory sounds collected to aid diagnosis of COVID-19. We use coughs and breathing to under- stand how discernible COVID-19 sounds are from those in asthma or healthy controls. Our results show that even a simple binary machine learning classifier is able to classify correctly healthy and COVID-19 sounds. We also show how we distinguish a user who tested positive for COVID-19 and has a cough from a healthy user with a cough, and users who tested positive for COVID-19 and have a cough from users with asthma and a cough. Our models achieve an AUC of above 80% across all tasks. These results are preliminary and only scratch the surface of the potential of this type of data and audio-based machine learning. This work opens the door to further investigation of how automatically analysed respiratory patterns could be used as pre-screening signals to aid COVID-19 diagnosis.ER

    Dzyaloshinskii-Moriya interaction in transport through single molecule transistors

    Full text link
    The Dzyaloshinskii-Moriya interaction is shown to result in a canting of spins in a single molecule transistor. We predict non-linear transport signatures of this effect induced by spin-orbit coupling for the generic case of a molecular dimer. The conductance is calculated using a master equation and is found to exhibit a non-trivial dependence on the magnitude and direction of an external magnetic field. We show how three-terminal transport measurements allow for a determination of the coupling-vector characterizing the Dzyaloshinskii-Moriya interaction. In particular, we show how its orientation, defining the intramolecular spin chirality, can be probed with ferromagnetic electrodes

    The Nernst effect and the boundaries of the Fermi liquid picture

    Full text link
    Following the observation of an anomalous Nernst signal in cuprates, the Nernst effect was explored in a variety of metals and superconductors during the past few years. This paper reviews the results obtained during this exploration, focusing on the Nernst response of normal quasi-particles as opposed to the one generated by superconducting vortices or by short-lived Cooper pairs. Contrary to what has been often assumed, the so-called Sondheimer cancelation does not imply a negligible Nernst response in a Fermi liquid. In fact, the amplitude of the Nernst response measured in various metals in the low-temperature limit is scattered over six orders of magnitude. According to the data, this amplitude is roughly set by the ratio of electron mobility to Fermi energy in agreement with the implications of the semi-classical transport theory.Comment: Final version, Topical review for JPC

    Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes

    Get PDF
    The presence and accessibility of a sub‐ice‐surface saline ocean at Enceladus, together with geothermal activity and a rocky core, make it a compelling location to conduct further, in‐depth, astrobiological investigations to probe for organic molecules indicative of extraterrestrial life. Cryovolcanic plumes in the south polar region of Enceladus enable the use of remote in situ sampling and analysis techniques. However, efficient plume sampling and the transportation of captured organic materials to an organic analyzer present unique challenges for an Enceladus mission. A systematic study, accelerating organic ice‐particle simulants into soft inert metal targets at velocities ranging 0.5–3.0 km s−1, was carried out using a light gas gun to explore the efficacy of a plume capture instrument. Capture efficiency varied for different metal targets as a function of impact velocity and particle size. Importantly, organic chemical compounds remained chemically intact in particles captured at speeds up to ~2 km s−1. Calibration plots relating the velocity, crater, and particle diameter were established to facilitate future ice‐particle impact experiments where the size of individual ice particles is unknown
    corecore