1,176 research outputs found
MiniBooNE
The physics motivations, design, and status of the Booster Neutrino
Experiment at Fermilab, MiniBooNE, are briefly discussed. Particular emphasis
is given on the ongoing preparatory work that is needed for the MiniBooNE muon
neutrino to electron neutrino oscillation appearance search. This search aims
to confirm or refute in a definitive and independent way the evidence for
neutrino oscillations reported by the LSND experiment.Comment: 3 pages, no figures, to appear in the proceedings of the 9th
International Conference on Astroparticle and Underground Physics (TAUP
2005), Zaragoza, Spain, 10-14 Sep 200
Coherent Pion Production by Neutrinos
In this talk I review the main features of the coherent/diffractive pion
production by neutrinos on nuclei. The method is based on PCAC and relates the
reaction to elastic pion-nucleus scattering. Estimates for the
expected rates and distributions in neutrino reactions are presented with the
help of hadronic data. The absolute rates are significantly smaller than the
older estimates which brings theory in agreement with the neutral current
measurements and the bounds in charged current reactions.Comment: 5 pages, 7 figures, Proceedings of the Sixth International Workshop
on Neutrino-Nucleus Interactions in the Few-GeV Region (NuInt09), May 18-22,
Sitges, Barcelona, Spai
Vertex Intrinsic Fitness: How to Produce Arbitrary Scale-Free Networks
We study a recent model of random networks based on the presence of an
intrinsic character of the vertices called fitness. The vertices fitnesses are
drawn from a given probability distribution density. The edges between pair of
vertices are drawn according to a linking probability function depending on the
fitnesses of the two vertices involved. We study here different choices for the
probability distribution densities and the linking functions. We find that,
irrespective of the particular choices, the generation of scale-free networks
is straightforward. We then derive the general conditions under which
scale-free behavior appears. This model could then represent a possible
explanation for the ubiquity and robustness of such structures.Comment: 4 pages, 3 figures, RevTe
Information/Systems and Quantitative Core Courses in AACSB Accredited Business Schools
During the 1994 academic year, a survey was conducted of institutions accredited by the American Assembly of Collegiate Schools of Business (AACSB). The purpose of the survey was to determine the nature and characteristics of the quantitative and Information Systems core courses. The results, which were contrasted to those of a similar survey done in 1987, provide a snapshot of the current status of these core classes, reveal evolutionary changes, and portend possible future trends
Tunable delay lines in silicon photonics: coupled resonators and photonic crystals, a comparison
In this paper, we report a direct comparison between coupled resonator optical waveguides (CROWs) and photonic crystal waveguides (PhCWs), which have both been exploited as tunable delay lines. The two structures were fabricated on the same silicon-on-insulator (SOI) technological platform, with the same fabrication facilities and evaluated under the same signal bit-rate conditions. We compare the frequency- and time-domain response of the two structures; the physical mechanism underlying the tuning of the delay; the main limits induced by loss, dispersion, and structural disorder; and the impact of CROW and PhCW tunable delay lines on the transmission of data stream intensity and phase modulated up to 100 Gb/s. The main result of this study is that, in the considered domain of applications, CROWs and PhCWs behave much more similarly than one would expect. At data rates around 100 Gb/s, CROWs and PhCWs can be placed in competition. Lower data rates, where longer absolute delays are required and propagation loss becomes a critical issue, are the preferred domain of CROWs fabricated with large ring resonators, while at data rates in the terabit range, PhCWs remain the leading technology
First measurement of the muon neutrino charged current quasielastic double differential cross section
A high-statistics sample of charged-current muon neutrino scattering events collected with the MiniBooNE experiment is analyzed to extract the first measurement of the double differential cross section (d(2)sigma/dT(mu)dcos theta(mu)) for charged-current quasielastic (CCQE) scattering on carbon. This result features minimal model dependence and provides the most complete information on this process to date. With the assumption of CCQE scattering, the absolute cross section as a function of neutrino energy (sigma[E-nu]) and the single differential cross section (d sigma/dQ(2)) are extracted to facilitate comparison with previous measurements. These quantities may be used to characterize an effective axial-vector form factor of the nucleon and to improve the modeling of low-energy neutrino interactions on nuclear targets. The results are relevant for experiments searching for neutrino oscillations.This work was conducted with support from Fermilab,
the U.S. Department of Energy, and the National Science
Foundation.Peer reviewe
Search for core-collapse supernovae using the MiniBooNE neutrino detector
We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L.We acknowledge the support of Fermilab, the Department of Energy, and the National Science Foundation. We are grateful to John Beacom for his valuable insight and advice. We thank Alessandro Mirizzi, Georg G. Raffelt, and Pasquale D. Serpico for providing the probability distribution for the Milky Way.Peer reviewe
A variable delay integrated receiver for differential phase-shift keying optical transmission systems
An integrated variable delay receiver for DPSK optical transmission systems is presented. The device is realized in silicon-on-insulator technology and can be used to detect DPSK signals at any bit-rates between 10 and 15 Gbit/s
- …