285 research outputs found

    Edges of the Barvinok-Novik orbitope

    Full text link
    Here we study the k^th symmetric trigonometric moment curve and its convex hull, the Barvinok-Novik orbitope. In 2008, Barvinok and Novik introduce these objects and show that there is some threshold so that for two points on S^1 with arclength below this threshold, the line segment between their lifts on the curve form an edge on the Barvinok-Novik orbitope and for points with arclenth above this threshold, their lifts do not form an edge. They also give a lower bound for this threshold and conjecture that this bound is tight. Results of Smilansky prove tightness for k=2. Here we prove this conjecture for all k.Comment: 10 pages, 3 figures, corrected Lemma 4 and other minor revision

    Sum of Two Squares - Pair Correlation and Distribution in Short Intervals

    Full text link
    In this work we show that based on a conjecture for the pair correlation of integers representable as sums of two squares, which was first suggested by Connors and Keating and reformulated here, the second moment of the distribution of the number of representable integers in short intervals is consistent with a Poissonian distribution, where "short" means of length comparable to the mean spacing between sums of two squares. In addition we present a method for producing such conjectures through calculations in prime power residue rings and describe how these conjectures, as well as the above stated result, may by generalized to other binary quadratic forms. While producing these pair correlation conjectures we arrive at a surprising result regarding Mertens' formula for primes in arithmetic progressions, and in order to test the validity of the conjectures, we present numericalz computations which support our approach.Comment: 3 figure

    On the semiclassical theory for universal transmission fluctuations in chaotic systems: the importance of unitarity

    Full text link
    The standard semiclassical calculation of transmission correlation functions for chaotic systems is severely influenced by unitarity problems. We show that unitarity alone imposes a set of relationships between cross sections correlation functions which go beyond the diagonal approximation. When these relationships are properly used to supplement the semiclassical scheme we obtain transmission correlation functions in full agreement with the exact statistical theory and the experiment. Our approach also provides a novel prediction for the transmission correlations in the case where time reversal symmetry is present

    On the classical-quantum correspondence for the scattering dwell time

    Full text link
    Using results from the theory of dynamical systems, we derive a general expression for the classical average scattering dwell time, tau_av. Remarkably, tau_av depends only on a ratio of phase space volumes. We further show that, for a wide class of systems, the average classical dwell time is not in correspondence with the energy average of the quantum Wigner time delay.Comment: 5 pages, 1 figur

    Nodal domains statistics - a criterion for quantum chaos

    Get PDF
    We consider the distribution of the (properly normalized) numbers of nodal domains of wave functions in 2-dd quantum billiards. We show that these distributions distinguish clearly between systems with integrable (separable) or chaotic underlying classical dynamics, and for each case the limiting distribution is universal (system independent). Thus, a new criterion for quantum chaos is provided by the statistics of the wave functions, which complements the well established criterion based on spectral statistics.Comment: 4 pages, 5 figures, revte

    Counting nodal domains on surfaces of revolution

    Full text link
    We consider eigenfunctions of the Laplace-Beltrami operator on special surfaces of revolution. For this separable system, the nodal domains of the (real) eigenfunctions form a checker-board pattern, and their number νn\nu_n is proportional to the product of the angular and the "surface" quantum numbers. Arranging the wave functions by increasing values of the Laplace-Beltrami spectrum, we obtain the nodal sequence, whose statistical properties we study. In particular we investigate the distribution of the normalized counts νnn\frac{\nu_n}{n} for sequences of eigenfunctions with KnK+ΔKK \le n\le K + \Delta K where K,ΔKNK,\Delta K \in \mathbb{N}. We show that the distribution approaches a limit as K,ΔKK,\Delta K\to\infty (the classical limit), and study the leading corrections in the semi-classical limit. With this information, we derive the central result of this work: the nodal sequence of a mirror-symmetric surface is sufficient to uniquely determine its shape (modulo scaling).Comment: 36 pages, 8 figure

    Characterization of Quantum Chaos by the Autocorrelation Function of Spectral Determinants

    Full text link
    The autocorrelation function of spectral determinants is proposed as a convenient tool for the characterization of spectral statistics in general, and for the study of the intimate link between quantum chaos and random matrix theory, in particular. For this purpose, the correlation functions of spectral determinants are evaluated for various random matrix ensembles, and are compared with the corresponding semiclassical expressions. The method is demonstrated by applying it to the spectra of the quantized Sinai billiards in two and three dimensions.Comment: LaTeX, 32 pages, 6 figure

    Effect of phase relaxation on quantum superpositions in complex collisions

    Full text link
    We study the effect of phase relaxation on coherent superpositions of rotating clockwise and anticlockwise wave packets in the regime of strongly overlapping resonances of the intermediate complex. Such highly excited deformed complexes may be created in binary collisions of heavy ions, molecules and atomic clusters. It is shown that phase relaxation leads to a reduction of the interference fringes, thus mimicking the effect of decoherence. This reduction is crucial for the determination of the phase--relaxation width from the data on the excitation function oscillations in heavy--ion collisions and bimolecular chemical reactions. The difference between the effects of phase relaxation and decoherence is discussed.Comment: Extended revised version; 9 pages and 3 colour ps figure

    Quantal Consequences of Perturbations Which Destroy Structurally Unstable Orbits in Chaotic Billiards

    Full text link
    Non-generic contributions to the quantal level-density from parallel segments in billiards are investigated. These contributions are due to the existence of marginally stable families of periodic orbits, which are structurally unstable, in the sense that small perturbations, such as a slight tilt of one of the segments, destroy them completely. We investigate the effects of such perturbation on the corresponding quantum spectra, and demonstrate them for the stadium billiard

    Families of spherical caps: spectra and ray limit

    Full text link
    We consider a family of surfaces of revolution ranging between a disc and a hemisphere, that is spherical caps. For this family, we study the spectral density in the ray limit and arrive at a trace formula with geodesic polygons describing the spectral fluctuations. When the caps approach the hemisphere the spectrum becomes equally spaced and highly degenerate whereas the derived trace formula breaks down. We discuss its divergence and also derive a different trace formula for this hemispherical case. We next turn to perturbative corrections in the wave number where the work in the literature is done for either flat domains or curved without boundaries. In the present case, we calculate the leading correction explicitly and incorporate it into the semiclassical expression for the fluctuating part of the spectral density. To the best of our knowledge, this is the first calculation of such perturbative corrections in the case of curvature and boundary.Comment: 28 pages, 7 figure
    corecore