171 research outputs found
Gene expression profiling reveals functional specialization along the intestinal tract of a carnivorous teleostean fish (Dicentrarchus labrax)
High-quality sequencing reads from the intestine of European sea bass were assembled, annotated by similarity against protein reference databases and combined with nucleotide sequences from public and private databases. After redundancy filtering, 24,906 non-redundant annotated sequences encoding 15,367 different gene descriptions were obtained. These annotated sequences were used to design a custom, high-density oligo-microarray (8 × 15 K) for the transcriptomic profiling of anterior (AI), middle (MI), and posterior (PI) intestinal segments. Similar molecular signatures were found for AI and MI segments, which were combined in a single group (AI-MI) whereas the PI outstood separately, with more than 1900 differentially expressed genes with a fold-change cutoff of 2. Functional analysis revealed that molecular and cellular functions related to feed digestion and nutrient absorption and transport were over-represented in AI-MI segments. By contrast, the initiation and establishment of immune defense mechanisms became especially relevant in PI, although the microarray expression profiling validated by qPCR indicated that these functional changes are gradual from anterior to posterior intestinal segments. This functional divergence occurred in association with spatial transcriptional changes in nutrient transporters and the mucosal chemosensing system via G protein-coupled receptors. These findings contribute to identify key indicators of gut functions and to compare different fish feeding strategies and immune defense mechanisms acquired along the evolution of teleosts.This work was funded by the EU seventh Framework Programme by the ARRAINA (Advanced Research Initiatives for Nutrition and Aquaculture; KBBE-2011-288925) project. It does not necessarily reflect the views of the EU and in no way anticipates the Commission's future policy in this area. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. Additional funding was obtained from the Spanish Ministerio de Economía y Competitividad through the MI2-FISH project (Unraveling Metabolic, Intestinal and Immunopathological Fish Status; AGL2013-48560) and Generalitat Valenciana (PROMETEO FASE II-2014/085).Peer Reviewe
Modulation of the IgM gene expression and IgM immunoreactive cell distribution by the nutritional background in gilthead sea bream (Sparus aurata) challenged with Enteromyxum leei (Myxozoa)
The aim of the present work was to determine if a plant protein-based diet containing vegetable oils (VO) as the major lipid source could alter the distribution of IgM immunoreactive cells (IRCs) and the IgM expression pattern in the intestine and haematopoietic tissues of gilthead sea bream (GSB) (. Sparus aurata) challenged with the myxosporean Enteromyxum leei. In a first trial (T1), GSB fed for 9 months either a fish oil (FO) diet or a blend of VO at 66% of replacement (66VO diet) was challenged by exposure to parasite-contaminated water effluent. All fish were periodically and non-lethally sampled to know their infection status. After 102 days of exposure, samples of intestine and head kidney were obtained for IgM expression and immunohistochemical detection (IHC). Additional samples of spleen were taken for IHC. Fish were categorized as control (C, not exposed), and early (E), or late (L) infected. The 66VO diet had no effect on the number of IgM-IRCs in any of the tissues or on IgM expression in C fish, whereas the infection with E. leei had a strong effect on the intestine. A combined time-diet effect was also observed, since the highest expression and IRCs values were registered in the posterior intestine (Pi) of E-66VO fish. A positive correlation was found between IgM expression and the presence of IgM-IRCs in the Pi. The effect of the time of infection was studied more in detail in a second trial (T2) in which samples of Pi were taken at 0, 24, 51, 91 and 133 days after exposure to the parasite. A significant increase of the IgM expression was detected only in parasitized fish, and very late after exposure. These results show that the duration of the exposure to the parasite is the most determinant factor for the observed intestinal IgM increased phenotype which gets magnified by the feeding of a high VO-based diet. © 2012 Elsevier Ltd.This work was funded by EU through projects AQUAMAX (FOOD-CT-2006-16249; Sustainable Aquafeeds to Maximise the Health Benefits of Farmed Fish for Consumers) and ARRAINA (Advanced Research Initiatives for Nutrition & Aquaculture, FP7/2007/2013; grant agreement n° 288925), and by the Spanish Ministry of Science and Innovation (MICINN) through the project AGL2009-13282-C02-01. Additional funding was obtained from the “Generalitat Valenciana” (research grant PROMETEO 2010/006). I. E. received a Spanish PhD fellowship (FPI) from MICINN.Peer Reviewe
3D Morphology, Ultrastructure and Development of Ceratomyxa puntazzi Stages: First Insights into the Mechanisms of Motility and Budding in the Myxozoa
Free, amoeboid movement of organisms within media as well as substrate-dependent cellular crawling processes of cells and organisms require an actin cytoskeleton. This system is also involved in the cytokinetic processes of all eukaryotic cells. Myxozoan parasites are known for the disease they cause in economical important fishes. Usually, their pathology is related to rapid proliferation in the host. However, the sequences of their development are still poorly understood, especially with regard to pre-sporogonic proliferation mechanisms. The present work employs light microscopy (LM), electron microscopy (SEM, TEM) and confocal laser scanning microscopy (CLSM) in combination with specific stains (Nile Red, DAPI, Phalloidin), to study the three-dimensional morphology, motility, ultrastructure and cellular composition of Ceratomyxa puntazzi, a myxozoan inhabiting the bile of the sharpsnout seabream
A portrait of the immune response to proliferative kidney disease (PKD) in rainbow trout
This work was supported by the European Commission under the Horizon H2020 research and innovation programme (Grant H2020‐634429 ParaFishControl) and by the European Research Council (ERC Consolidator Grant 2016 725061 TEMUBLYM). CB was supported by the SNSF Post‐Doc Mobility grant P400PB_183824.Peer reviewedPublisher PD
Effects of dietary NEXT ENHANCE®150 on growth performance and expression of immune and intestinal integrity related genes in gilthead sea bream (Sparus aurata L.)
Gilthead sea bream juveniles were fed different doses (0, 50, 100, 200, 300ppm) of NEXT ENHANCE®150 (NE) for 9 weeks. Feed gain ratio (FGR) was improved by a 10% with all the doses, but feed intake decreased in a dose dependent manner. The optimum inclusion level to achieve maximum growth was set at 100ppm. The hepatosomatic index did not vary and only at the highest dose, viscerosomatic and splenosomatic indexes were significantly decreased. No significant changes were found in haematological parameters, plasma biochemistry, total antioxidant capacity and respiratory burst. In a second trial, NE was given at 100ppm alone (D1) or in combination with the prebiotic PREVIDA® (0.5%) (PRE) (D2) for 17 weeks. There were no differences in the growth rates, and FGR was equally improved for D1 and D2. No significant changes in haematology and plasma antioxidant capacity were detected. The histological examination of the liver and the intestine showed no outstanding differences in the liver, but the number of mucosal foldings appeared to be higher in D1 and D2 vs CTRL diet and the density of enterocytes and goblet cells also appeared higher, particularly in the anterior intestine. A 87-gene PCR-array was constructed based on our transcriptomic database (www.nutrigroup-iats.org/seabreamdb) and applied to samples of anterior (AI) and posterior (PI) intestine. It included 54 new gene sequences and other sequences as markers of cell differentiation and proliferation, intestinal architecture and permeability, enterocyte mass and epithelial damage, interleukins and cytokines, pattern recognition receptors (PRR), and mitochondrial function and biogenesis. More than half of the studied genes had significantly different expression between AI and PI segments. The functional significance of this differential tissue expression is discussed. The experimental diets induced significant changes in the expression of 26 genes. The intensity of these changes and the number of genes that were significantly regulated were higher at PI than at AI. At PI, both diets invoked a clear down-regulation of genes involved in cell differentiation and proliferation, some involved in cell to cell communication, cytokines and several PRR. By contrast, up-regulation was mostly found for genes related to enterocyte mass, cell epithelial damage and mitochondrial activity at AI. The changes were of the same order for D1 and D2, except for fatty acid-binding proteins 2 and 6 and the PRR fucolectin, which were higher in D2 and D1 fed fish, respectively. Thus, NE alone or in combination with PRE seems to induce an anti-inflammatory and anti-proliferative transcriptomic profile with probable improvement in the absorptive capacity of the intestine that would explain the improved FGR. © 2015 Elsevier Ltd.This work has been carried out with financial support from the Commission of the European Communities, specific RTD programme of Framework Programme 7, (FP7/2007-2013) under grant projects ARRAINA (KBBE-2011-288925) and AQUAEXCEL (262336) under TNA project 0019/02/04/14 to ANDROMEDA. It does not necessarily reflect the EU views and in no way anticipates the Commission's future policy in this area. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Additional funding has been received by Spanish MINECO project no. AGL2013-48560 and Generalitat Valenciana (PROMETEOII/2014/085 and ISIC/2012/003).Peer Reviewe
Under control: how a dietary additive can restore the gut microbiome and proteomic profile, and improve disease resilience in a marine teleostean fish fed vegetable diets
[Background]: The constant increase of aquaculture production and wealthy seafood consumption has forced the industry to explore alternative and more sustainable raw aquafeed materials, and plant ingredients have been used to replace marine feedstuffs in many farmed fish. The objective of the present study was to assess whether plant-based diets can induce changes in the intestinal mucus proteome, gut autochthonous microbiota and disease susceptibility of fish, and whether these changes could be reversed by the addition of sodium butyrate to the diets. Three different trials were performed using the teleostean gilthead sea bream (Sparus aurata) as model. In a first preliminary short-term trial, fish were fed with the additive (0.8%) supplementing a basal diet with low vegetable inclusion (D1) and then challenged with a bacteria to detect possible effects on survival. In a second trial, fish were fed with diets with greater vegetable inclusion levels (D2, D3) and the long-term effect of sodium butyrate at a lower dose (0.4%) added to D3 (D4 diet) was tested on the intestinal proteome and microbiome. In a third trial, the long-term effectiveness of sodium butyrate (D4) to prevent disease outcome after an intestinal parasite (Enteromyxum leei) challenge was tested. [Results]: The results showed that opposed forces were driven by dietary plant ingredients and sodium butyrate supplementation in fish diet. On the one hand, vegetable diets induced high parasite infection levels that provoked drops in growth performance, decreased intestinal microbiota diversity, induced the dominance of the Photobacterium genus, as well as altered the gut mucosal proteome suggesting detrimental effects on intestinal function. On the other hand, butyrate addition slightly decreased cumulative mortality after bacterial challenge, avoided growth retardation in parasitized fish, increased intestinal microbiota diversity with a higher representation of butyrate-producing bacteria and reversed most vegetable diet-induced changes in the gut proteome.
[Conclusions]: This integrative work gives insights on the pleiotropic effects of a dietary additive on the restoration of intestinal homeostasis and disease resilience, using a multifaceted approach.This work has been carried out with financial support from the European Union under grant projects ARRAINA (FP7-KBBE-2011-288,925) to JPS, MP
and VK and ParaFishControl (H2020-634429) to ASB. Additional funding has been received from Spanish Ministry of Economy and Competitiveness (MINECO) project no. AGL2013-
48560-R to JPS and ASB, and Generalitat Valenciana (PROMETEOII/2014/085)
to ASB. MCP was contracted under CSIC PIE project no. 201740E013 and MINECO FPDI-2013-15741, and IE under APOSTD/2016/037 grant by the
“Generalitat Valenciana”.We acknowledge support by the CSIC Open Access Publication Initiative through its Unit of Information Resources for Research (URICI)
Cutaneus myxosporidiasis in the Australian green tree frog (Litoria caerulea)
This case is reported with the intention of highlighting the presentation of cutaneous myxosporidiasis in Australian tree frog (Litoria caerulea) caused by genus Myxobolus. The morphology and morphometric characteristic of the spores were determined using light microscopy and differential interference contrast microscopy. Spores were pyriform in shape in frontal view and oval in lateral view, and the average size was respectively 11.4 × 6.0 × 4.5 μm (12.1 − 9.5 × 6.3 − 5.4 × 5.0 − 4.1 μm). To the best of our knowledge, this is the second case of skin invasion caused by myxosporeans in amphibians
Disruption of gut integrity and permeability contributes to enteritis in a fish‑parasite model: a story told from serum metabolomics
Background In the animal production sector, enteritis is responsible for serious economic losses, and intestinal parasitism is a major stress factor leading to malnutrition and lowered performance and animal production efficiency. The effect of enteric parasites on the gut function of teleost fish, which represent the most ancient bony vertebrates, is far from being understood. The intestinal myxozoan parasite Enteromyxum leei dwells between gut epithelial cells and causes severe enteritis in gilthead sea bream (Sparus aurata), anorexia, cachexia, growth impairment, reduced marketability and increased mortality. Methods This study aimed to outline the gut failure in this fish-parasite model using a multifaceted approach and to find and validate non-lethal serum markers of gut barrier dysfunction. Intestinal integrity was studied in parasitized and non-parasitized fish by immunohistochemistry with specific markers for cellular adhesion (E-cadherin) and tight junctions (Tjp1 and Cldn3) and by functional studies of permeability (oral administration of FITC-dextran) and electrophysiology (Ussing chambers). Serum samples from parasitized and non-parasitized fish were analyzed using non-targeted metabolomics and some significantly altered metabolites were selected to be validated using commercial kits. Results The immunodetection of Tjp1 and Cldn3 was significantly lower in the intestine of parasitized fish, while no strong differences were found in E-cadherin. Parasitized fish showed a significant increase in paracellular uptake measured by FITC-dextran detection in serum. Electrophysiology showed a decrease in transepithelial resistance in infected animals, which showed a diarrheic profile. Serum metabolomics revealed 3702 ions, from which the differential expression of 20 identified compounds significantly separated control from infected groups in multivariate analyses. Of these compounds, serum inosine (decreased) and creatine (increased) were identified as relevant and validated with commercial kits. Conclusions The results demonstrate the disruption of tight junctions and the loss of gut barrier function, a metabolomic profile of absorption dysfunction and anorexia, which further outline the pathophysiological effects of E. leei
Modulation of gilthead sea bream gut microbiota by a bioactive egg white hydrolysate: Interactions between bacteria and host lipid metabolism
This study aimed to highlight the relationship between diet, animal performance and mucosal adherent gut microbiota (anterior intestine) in fish fed plant-based diets supplemented with an egg white hydrolysate (EWH) with antioxidant and antiobesogenic activity in obese rats. The feeding trial with juveniles of gilthead sea bream (Sparus aurata) lasted 8 weeks. Fish were fed near to visual satiety with a fish meal (FM)/fish oil (FO) based diet (CTRL) or a plant-based diet with/without EWH supplementation. Specific growth rate decreased gradually from 2.16% in CTRL fish to 1.88% in EWH fish due to a reduced feed intake, and a slight impairment of feed conversion ratio. Plant-based diets feeding triggered a hyperplasic inflammation of the anterior intestine regardless of EWH supplementation.This work was supported by the EU H2020 Research Innovation Program under the TNA Program (project AE150009) at IATS-CSIC Research Infrastructure within AQUAEXCEL2020 Project (652831). This output reflects only the author’s view and the European Union cannot be held responsible for any use that may be made of the information contained herein. Additional funding was obtained by a Spanish MICINN project (Bream-AquaINTECH and RTI2018–094128-B-I00).
MCP was funded by a Ramón y Cajal Postdoctoral Research Fellowship [RYC2018-024049-I/AEI/10.13039/501100011033 cofunded by the European Social Fund (ESF) and ACOND/2020 Generalitat Valenciana].Peer reviewe
Evaluation of growth performance, oxidative stress and immune response in gilthead sea bream fed with novel feed formulations
Trabajo presentado en Aquaculture Europe 2020, celebrado en modalidad virtual del 12 al 15 de abril de 2021.[Introduction]: As the aquaculture sector continues to expand while being more environmentally conscious, the development of sustainable aquafeeds is becoming increasingly important (FAO, 2020). Tolerance to the replacement of fishmeal and fish oil in feeds has been largely studied in gilthead seabream (Sparus aurata) (Gasco et al., 2018; Karapanagiotidis, Psofakis, Mente, Malandrakis, & Golomazou, 2019), and many products emerge now as potential alternatives to ingredients used in conventional formulations. A main goal of GAIN EU project is to evaluate emerging ingredients, already commercially available, using different formulation concepts that consider all fish nutritional requirements. GAIN diets are based on circularity principles, maximizing resource efficiency, while contributing towards zero waste in the agro-food value chain, feed cost-effectiveness, and having good social acceptance. The present study aims to understand the real impacts of these novel feed formulations on growth performance, nutritional condition, immunity, and oxidative status using biomarkers.[Methods]: Quadruplicate groups of gilthead seabream (Sparus aurata) were fed ad libitum with four different diets. Three of them have been designed to facilitate aquaculture eco-intensification through increased circularity and resource utilization: NOPAP - formula without terrestrial animal by-products processed animal protein; PAP - formula with terrestrial animal by-products processed animal protein; and MIX - a mixture of NOPAP and PAP. The fourth feed followed a standard commercial formulation and was used as a control diet. After a 77-day feeding trial, plasma samples were collected to evaluate humoral parameters (protease, anti-protease, bactericidal activity and IgM). Liver and head kidney tissues were collected for the simultaneous profiling of a panel of 42 (liver) or 29 (head kidney) genes, as markers of growth performance, lipid and energy metabolism, and immune and antioxidant activities by qPCR. Liver samples were also used to analyse oxidative biomarker (Lipid peroxidation and catalase).[Results]: Tested feed formulations did not affect growth performance or feed intake. However, fish fed PAP and MIX diets had a higher feed conversion ratio (FCR) and protein efficiency ratio than control and NOPAP groups. This impairment was accompanied by a decreased hepatic expression of igf-i and ghr1. NOPAP diet slightly increased innate immunity parameters, showing better results on bactericidal, IgM, and anti-protease activity, as well as a significant up-regulation of il-8 in head kidney. Fish fed with PAP diet displayed an up-regulation of pro-inflammatory genes, namely il-8 and other cytokines (il-1β, tnf-α), chemokines (ck8), and chemokine receptors (ccr3). The same pattern was found for the T-cell markers cd3x, cd4, and cd8a. The activity of the antioxidant enzyme catalase was significantly lower in fish fed with PAP and MIX diet, being a possible indication of decreased antioxidant defences. This is supported by the observed regulation of antioxidant genes (mn-sod/sod2, gpr-170, gpr-94, and gpr-75), although not statistically significant.[Discussion]: The similar performance of novel formulations and the control diet indicates that they can be considered as viable options for seabream feeds. Differences in FCR suggest that NOPAP can promote a better bioavailability and/or increased absorption of key nutrients than PAP and MIX diets. Indeed, this impairment was also evidenced by their hepatic expression pattern of markers of growth performance. In general, PAP exhibited an opposite response to the NOPAP group. NOPAP was closer to the control diet, and MIX showed intermediate values between PAP and NOPAP in almost all parameters. The markedly pro-inflammatory head kidney expression profile in PAP fish may be also indicative of an impaired response at the mucosal level. In any case, the low proportion of differentially expressed genes between the experimental diets and control (18 out of 71) constitutes an additional and indirect confirmation of their suitability.[Conclusions]: Novel feed formulations for gilthead seabream seem to be viable options for a near future. In any case, all results are related to the formulation itself and cannot be attributed to a specific ingredient alteration. More studies are necessary to understand the cost-benefit of these new formulations and their market acceptability to optimize sustainability within the current/predictable European regulatory framework.“This project was financed from the European Union’s Horizon 2020 research and innovation programme under grant agreement N° 773330 (GAIN), with additional support from Nord university (Norway) and Sparos SA (Portugal)”
- …