57 research outputs found

    The antiproliferative effect of mulberry (Morus alba L.) plant on hepatocarcinoma cell line HepG2

    Get PDF
    AbstractThis study aimed to investigate the antiproliferative effect of aqueous and organic extracts of mulberry leaves (Morus Alba L.) on human hepatocellular carcinoma HepG2 cell line. Mulberry leaf extracts were prepared using the solvents: water, 50% aqueous MeOH, and 100% MeOH for different time intervals, while the cells treated with dimethyl sulfoxide (DMSO) served as control. The effects of aqueous and organic extracts of M. alba L. leaves on HepG2 cell viability, nuclear factor kappa B (NF-κB) gene expression, alfa-fetoprotein (AFP), albumin (ALB), gamma-glutamyl transpeptidase (γ-GT) and alkaline phosphatase (ALP) were measured. The results of the cell viability assays showed that water, 50% aqueous MeOH, and 100% MeOH extracts exhibited a highly significant inhibitory effect on HepG2 cell proliferation which was evidenced by a reduction in viable cell count. The results were confirmed by microscopical examination of cell morphology. Furthermore, the mulberry leaf extracts suppressed the activity of NF-κB gene expression of HepG2 cells compared to the control. Also a highly significant depression occurred at the levels of AFP, γ-GT and ALP in HepG2 cells compared with that of controls in a time dependent manner. By contrast, the mulberry leaf extracts increased the secretion of ALB. Therefore, the conclusion was that the organic and aqueous extracts of mulberry leaves inhibit the growth of HepG2 cells through suppressing the activity of NF-κB gene expression and modulate the biochemical markers

    Constituents of the Polar Extracts from Algerian Pituranthos scoparius

    No full text

    Carotamine, a Unique Aromatic Amide from Daucus Carota L. Var Biossieri (Apiaceae)

    No full text
    The unique aromatic peptide 4-(p-aminobenzoylamino)-2-aminobenzoic acid, carotamine, together with 2,4-diaminobenzoic acid, isolated for the first time from a plant source, were identified from the aqueous alcoholic extract of the aerial parts of Daucus carota L. var. boissieri (Apiaceae). The structures were determined through conventional methods of analysis and confirmed by LC-ESI/MS and NMR spectral analysis

    ISOLATION OF BIOACTIVE COMPOUNDS FROM CENTAUREA AEGYPTIACA

    Get PDF
    Objective: In a previous study, Centaurea aegyptiaca ethanol and ethyl acetate extracts showed potent cytotoxic effects against laryngeal (HEP2) and hepatic (HEPG2) carcinoma cell lines. Additionally, two novel compounds were isolated and identified. The aim of this study is to continue isolating and identifying another compound (s) that may, also, be responsible for this potent biological activity.Methods: C. aegyptiaca dried aerial parts were extracted with ethanol and ethyl acetate. Both extracts were chromatographed separately to afford seven guaianolides that were identified using different spectroscopic methods. Moreover, compounds 1-7 were evaluated for their cytotoxicity (IC50, µM) against HEP2 and HEPG2 cells in comparison to the normal fibroblasts (BHK) using sulforhodamine B assay. Doxorubicin was used as a positive control.Results: Seven sesquiterpene lactones, centaurepensin, also known as chlorohyssopifolin A (1), 8α-hydroxy-11α, 13-dihydrozaluzanin C (2), chlorohyssopifolin B (3), desacylcynaropicrin (4), chlorohyssopifolin C, acroptilin (5), subluteolide (6), and solstitiolide (7) were isolated from C. aegyptiaca extracts and identified. This is the first report on the occurrence of 2, 4, 5 and 6 in C. aegyptiaca. Compounds 1-4 and 6 exhibited selective cytotoxic effects against HEP2 and HEPG2 cells. However, compounds 1 and 7 showed the highest activities against HEP2 with IC50 values of 10.6±0.02 and 10.9±0.03 µM, respectively. Moreover, compound 3 was the most potent one against HEPG2 cells with IC50value of 13.8±0.05 µM.Conclusions: Chemical investigation of C. aegyptiaca ethanol and ethyl acetate extracts led to the isolation and identification of seven guaianolides. These compounds exhibited good cytotoxic activities against HEP2 and HEPG2 cell lines

    Antioxidant Activity of Artocarpus heterophyllus Lam. (Jack Fruit) Leaf Extracts: Remarkable Attenuations of Hyperglycemia and Hyperlipidemia in Streptozotocin-Diabetic Rats

    Get PDF
    The present study examines the antioxidative, hypoglycemic, and hypolipidemic activities of Artocarpus heterophyllus (jack fruit) leaf extracts (JFEs). The 70% ethanol (JFEE), n-butanol (JFBE), water (JFWE), chloroform (JFCE), and ethyl acetate (JFEAE) extracts were obtained. Both JFEE and JFBE markedly scavenge diphenylpicrylhydrazyl radical and chelate Fe+2in vitro. A compound was isolated from JFBE and identified using 1D and 2D 1H- and 13C-NMR. The administration of JFEE or JFBE to streptozotocin (STZ)-diabetic rats significantly reduced fasting blood glucose (FBG) from 200 to 56 and 79 mg%, respectively; elevated insulin from 10.8 to 19.5 and 15.1 μU/ml, respectively; decreased lipid peroxides from 7.3 to 5.4 and 5.91 nmol/ml, respectively; decreased %glycosylated hemoglobin A1C (%HbA1C) from 6.8 to 4.5 and 5.0%, respectively; and increased total protein content from 2.5 to 6.3 and 5.7 mg%, respectively. Triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), VLDL-C, and LDL/HDL ratio significantly declined by -37, -19, -23, -37, and -39%, respectively, in the case of JFEE; and by -31, -14, -17, -31, and -25%, respectively, in the case of JFBE; as compared to diabetic rats. HDL-C increased by +37% (JFEE) and by +11% (JFBE). Both JFEE and JFBE have shown appreciable results in decreasing FBG, lipid peroxides, %HbA1C, TC, LDL-C, and TG levels, and increasing insulin, HDL-C, and protein content. The spectrometric analysis confirmed that the flavonoid isolated from JFBE was isoquercitrin. We can conclude from this study that JFEE and JFBE exert hypoglycemic and hypolipidemic effects in STZ-diabetic rats through an antioxidative pathway that might be referred to their flavonoid contents

    Antioxidant activity of phenolic compounds from extracts of Eucalyptus globulus and Melaleuca styphelioides and their protective role on D-glucose-induced hyperglycemic stress and oxalate stress in NRK-49Fcells

    No full text
    Phytochemicals serve as potential therapeutic agents for the prevention and treatment of diseases. In this study, we elucidate the renoprotective activity of compounds isolated from Eucalyptus globulus and Melaleuca styphelioides extracts in glucose- and oxalate-challenged NRK-49F cell model. The antioxidant potential of isolated compounds was evaluated based on their effect on antioxidant enzyme activities and lipid peroxidation levels. The results demonstrated that exposure of NRK-49F cells to glucose and oxalate stress augmented cell damage and attenuated antioxidant enzyme activities. The phytochemicals 2,2,8-trimethyl-6-formyl-chrom-3-ene-7-O--D-glucopyranoside, Cornusiin B and tellimagrandin I treatment restored antioxidant enzyme activity, significantly lowered lipid peroxidation levels and effectively protected cells from glucose and oxalate stress equivalent to the known antioxidant, N-acetyl cysteine. Pterocarinin A significantly reversed cellular damage owing to glucose stress. In conclusion, the compounds isolated from E. globulus and M. styphelioides showed potential cytoprotective and anti-oxidative property against glucose- and oxalate-induced oxidative stress in NRK-49F cells

    Antimicrobial Profile of Actinomycin D Analogs Secreted by Egyptian Desert Streptomyces sp. DH7

    No full text
    Egyptian deserts are an underexplored ecological niche, especially the Sinai Peninsula. In our recent study, we explored this extreme environment and shed light on the bioactive capabilities of desert Actinobacteria isolated from Sinai. Fifty desert Actinobacteria were isolated from the Sinai desert using mineral salt media, basal media, and starch casein media. The filtrate of Streptomyces sp. DH 7 displayed a high inhibitory effect against multidrug-resistant Staphylococcus aureus (MRSA) strains. The 16S rDNA sequencing confirmed that isolate DH7 belongs to the genus Streptomyces. The NJ phylogenetic tree showed relatedness to the Streptomyces flavofuscus strain NRRL B-2594 and Streptomyces pratensis strain ch24. The minimum inhibitory concentrations against MRSA were 16 and 32 μg/μL. Chemical investigation of the ethyl acetate extract of Streptomyces sp. DH7 led to the isolation and purification of natural products 1–4. Structure elucidation of the purified compounds was performed using detailed spectroscopic analysis including 1 and 2D NMR, and ESI-MS spectrometry. To the best of our knowledge, this is the first report for the isolation of compounds 1–4 from a natural source, while synthetic analogs were previously reported in the literature. Compounds 3–4 were identified as actinomycin D analogues and this is the first report for the production of actinomycin D analogs from the Sinai desert with an inhibitory effect against MRSA. We indorse further study for this analog that can develop enhanced antimicrobial activities. We confirm that the desert ecosystems in Egypt are rich sources of antibiotic-producing Actinobacteria
    • …
    corecore