32 research outputs found
How Do You Want That Insulator?
A normal insulator is turned into an exotic topological insulator by tuning
its elemental composition.Comment: Science Perspective article on arXiv:1104.463
Dynamical Axion Field in Topological Magnetic Insulators
Axions are very light, very weakly interacting particles postulated more than
30 years ago in the context of the Standard Model of particle physics. Their
existence could explain the missing dark matter of the universe. However,
despite intensive searches, they have yet to be detected. In this work, we show
that magnetic fluctuations of topological insulators couple to the
electromagnetic fields exactly like the axions, and propose several experiments
to detect this dynamical axion field. In particular, we show that the axion
coupling enables a nonlinear modulation of the electromagnetic field, leading
to attenuated total reflection. We propose a novel optical modulators device
based on this principle.Comment: 5 pages, 3 figure
Magnetic Response in Quantized Spin Hall Phase of Correlated Electrons
We investigate the magnetic response in the quantized spin Hall (SH) phase of
layered-honeycomb lattice system with intrinsic spin-orbit coupling lambda_SO
and on-site Hubbard U. The response is characterized by a parameter g= 4 U a^2
d / 3, where a and d are the lattice constant and interlayer distance,
respectively. When g< (sigma_{xy}^{s2} mu)^{-1}, where sigma_{xy}^{s} is the
quantized spin Hall conductivity and mu is the magnetic permeability, the
magnetic field inside the sample oscillates spatially. The oscillation vanishes
in the non-interacting limit U -> 0. When g > (sigma_{xy}^{s2} mu)^{-1}, the
system shows perfect diamagnetism, i.e., the Meissner effect occurs. We find
that superlattice structure with large lattice constant is favorable to see
these phenomena. We also point out that, as a result of Zeeman coupling, the
topologically-protected helical edge states shows weak diamagnetism which is
independent of the parameter g.Comment: 7 pages, the final version will be published in J. Phys. Soc. Jp
Mott physics and band topology in materials with strong spin-orbit interaction
Recent theory and experiment have revealed that strong spin-orbit coupling
can have dramatic qualitative effects on the band structure of weakly
interacting solids. Indeed, it leads to a distinct phase of matter, the
topological band insulator. In this paper, we consider the combined effects of
spin-orbit coupling and strong electron correlation, and show that the former
has both quantitative and qualitative effects upon the correlation-driven Mott
transition. As a specific example we take Ir-based pyrochlores, where the
subsystem of Ir 5d electrons is known to undergo a Mott transition. At weak
electron-electron interaction, we predict that Ir electrons are in a metallic
phase at weak spin-orbit interaction, and in a topological band insulator phase
at strong spin-orbit interaction. Very generally, we show that with increasing
strength of the electron-electron interaction, the effective spin-orbit
coupling is enhanced, increasing the domain of the topological band insulator.
Furthermore, in our model, we argue that with increasing interactions, the
topological band insulator is transformed into a "topological Mott insulator"
phase, which is characterized by gapless surface spin-only excitations. The
full phase diagram also includes a narrow region of gapless Mott insulator with
a spinon Fermi surface, and a magnetically ordered state at still larger
electron-electron interaction.Comment: 10+ pages including 3+ pages of Supplementary Informatio
Direct Evidence for Dominant Bond-directional Interactions in a Honeycomb Lattice Iridate Na2IrO3
Heisenberg interactions are ubiquitous in magnetic materials and have been
prevailing in modeling and designing quantum magnets. Bond-directional
interactions offer a novel alternative to Heisenberg exchange and provide the
building blocks of the Kitaev model, which has a quantum spin liquid (QSL) as
its exact ground state. Honeycomb iridates, A2IrO3 (A=Na,Li), offer potential
realizations of the Kitaev model, and their reported magnetic behaviors may be
interpreted within the Kitaev framework. However, the extent of their relevance
to the Kitaev model remains unclear, as evidence for bond-directional
interactions remains indirect or conjectural. Here, we present direct evidence
for dominant bond-directional interactions in antiferromagnetic Na2IrO3 and
show that they lead to strong magnetic frustration. Diffuse magnetic x-ray
scattering reveals broken spin-rotational symmetry even above Neel temperature,
with the three spin components exhibiting nano-scale correlations along
distinct crystallographic directions. This spin-space and real-space
entanglement directly manifests the bond-directional interactions, provides the
missing link to Kitaev physics in honeycomb iridates, and establishes a new
design strategy toward frustrated magnetism.Comment: Nature Physics, accepted (2015
ARPES: A probe of electronic correlations
Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct
methods of studying the electronic structure of solids. By measuring the
kinetic energy and angular distribution of the electrons photoemitted from a
sample illuminated with sufficiently high-energy radiation, one can gain
information on both the energy and momentum of the electrons propagating inside
a material. This is of vital importance in elucidating the connection between
electronic, magnetic, and chemical structure of solids, in particular for those
complex systems which cannot be appropriately described within the
independent-particle picture. Among the various classes of complex systems, of
great interest are the transition metal oxides, which have been at the center
stage in condensed matter physics for the last four decades. Following a
general introduction to the topic, we will lay the theoretical basis needed to
understand the pivotal role of ARPES in the study of such systems. After a
brief overview on the state-of-the-art capabilities of the technique, we will
review some of the most interesting and relevant case studies of the novel
physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.Comment: Chapter to appear in "Strongly Correlated Systems: Experimental
Techniques", edited by A. Avella and F. Mancini, Springer Series in
Solid-State Sciences (2013). A high-resolution version can be found at:
http://www.phas.ubc.ca/~quantmat/ARPES/PUBLICATIONS/Reviews/ARPES_Springer.pdf.
arXiv admin note: text overlap with arXiv:cond-mat/0307085,
arXiv:cond-mat/020850
Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state
Low-dimensional electronic systems have traditionally been obtained by electrostatically confining electrons, either in heterostructures or in intrinsically nanoscale materials such as single molecules, nanowires and graphene. Recently, a new method has emerged with the recognition that symmetry-protected topological (SPT) phases1, 2, which occur in systems with an energy gap to quasiparticle excitations (such as insulators or superconductors), can host robust surface states that remain gapless as long as the relevant global symmetry remains unbroken. The nature of the charge carriers in SPT surface states is intimately tied to the symmetry of the bulk, resulting in one- and two-dimensional electronic systems with novel properties. For example, time reversal symmetry endows the massless charge carriers on the surface of a three-dimensional topological insulator with helicity, fixing the orientation of their spin relative to their momentum3, 4. Weakly breaking this symmetry generates a gap on the surface5, resulting in charge carriers with finite effective mass and exotic spin textures6. Analogous manipulations have yet to be demonstrated in two-dimensional topological insulators, where the primary example of a SPT phase is the quantum spin Hall state7, 8. Here we demonstrate experimentally that charge-neutral monolayer graphene has a quantum spin Hall state9, 10 when it is subjected to a very large magnetic field angled with respect to the graphene plane. In contrast to time-reversal-symmetric systems7, this state is protected by a symmetry of planar spin rotations that emerges as electron spins in a half-filled Landau level are polarized by the large magnetic field. The properties of the resulting helical edge states can be modulated by balancing the applied field against an intrinsic antiferromagnetic instability11, 12, 13, which tends to spontaneously break the spin-rotation symmetry. In the resulting canted antiferromagnetic state, we observe transport signatures of gapped edge states, which constitute a new kind of one-dimensional electronic system with a tunable bandgap and an associated spin texture.United States. Dept. of Energy (Office of Science, BES Program, contract no. FG02-08ER46514)Gordon and Betty Moore FoundationGordon and Betty Moore Foundation (grant GBMF2931)United States. Dept. of Energy (Office of Science, BES Office, BES Office, Division of Materials Sciences and Engineering, under award DE-SC0001819)Massachusetts Institute of Technology (Pappalardo Fellowship in Physics
Interface engineering of quantum Hall effects in digital transition metal oxide heterostructures
Topological insulators are characterized by a nontrivial band topology driven
by the spin-orbit coupling. To fully explore the fundamental science and
application of topological insulators, material realization is indispensable.
Here we predict, based on tight-binding modeling and first-principles
calculations, that bilayers of perovskite-type transition-metal oxides grown
along the [111] crystallographic axis are potential candidates for
two-dimensional topological insulators. The topological band structure of these
materials can be fine-tuned by changing dopant ions, substrates, and external
gate voltages. We predict that LaAuO bilayers have a
topologically-nontrivial energy gap of about 0.15 eV, which is sufficiently
large to realize the quantum spin-Hall effect at room temperature. Intriguing
phenomena, such as fractional quantum Hall effect, associated with the
nearly-flat topologically-nontrivial bands found in systems are also
discussed.Comment: Main text 11 pages with 4 figures and 1 table. Supplementary
materials 4 pages with 2 figure