1,512 research outputs found

    Acceleration disturbances due to local gravity gradients in ASTROD I

    Full text link
    The Astrodynamical Space Test of Relativity using Optical Devices (ASTROD) mission consists of three spacecraft in separate solar orbits and carries out laser interferometric ranging. ASTROD aims at testing relativistic gravity, measuring the solar system and detecting gravitational waves. Because of the larger arm length, the sensitivity of ASTROD to gravitational waves is estimated to be about 30 times better than Laser Interferometer Space Antenna (LISA) in the frequency range lower than about 0.1 mHz. ASTROD I is a simple version of ASTROD, employing one spacecraft in a solar orbit. It is the first step for ASTROD and serves as a technology demonstration mission for ASTROD. In addition, several scientific results are expected in the ASTROD I experiment. The required acceleration noise level of ASTROD I is 10^-13 m s^-2 Hz^{-1/2} at the frequency of 0.1 mHz. In this paper, we focus on local gravity gradient noise that could be one of the largest acceleration disturbances in the ASTROD I experiment. We have carried out gravitational modelling for the current test-mass design and simplified configurations of ASTROD I by using an analytical method and the Monte Carlo method. Our analyses can be applied to figure out the optimal designs of the test mass and the constructing materials of the spacecraft, and the configuration of compensation mass to reduce local gravity gradients.Comment: 6 pages, presented at the 6th Edoardo Amaldi Conference (Okinawa Japan, June 2005); to be published in Journal of Physics: Conference Serie

    Geophysical constraint on a relic background of the dilatons

    Full text link
    According to a scenario in string cosmology, a relic background of light dilatons can be a significant component of the dark matter in the Universe. A new approach of searching for such a dilatonic background by observing Earth's surface gravity was proposed in my previous work. In this paper, the concept of the geophysical search is briefly reviewed, and the geophysical constraint on the dilaton background is presented as a function of the strength of the dilaton coupling, qb2q_b^2. For simplicity, I focus on massless dilatons and assume a simple Earth model. With the current upper limit on qb2q_b^2, we obtain the upper limit on the dimensionless energy density of the massless background, ΩDWh10026×107\Omega_{DW}h^2_{100} \leq 6 \times 10^{-7}, which is about one-order of magnitude more stringent than the one from astrophysical observations, at the frequency of \sim 7 ×\times 105^{-5} Hz. If the magnitude of qb2q_b^2 is experimentally found to be smaller than the current upper limit by one order of magnitude, the geophysical upper limit on ΩDWh1002\Omega_{DW}h^2_{100} becomes less stringent and comparable to the one obtained from the astrophysical observations.Comment: 6 pages, Proceedings for the 8th Edoardo Amaldi Conference on Gravitational Waves, 21-26 June, 2009, Columbia University, New York, US

    Electrothermal flow in Dielectrophoresis of Single-Walled Carbon Nanotubes

    Full text link
    We theoretically investigate the impact of the electrothermal flow on the dielectrophoretic separation of single-walled carbon nanotubes (SWNT). The electrothermal flow is observed to control the motions of semiconducting SWNTs in a sizeable domain near the electrodes under typical experimental conditions, therefore helping the dielectrophoretic force to attract semiconducting SWNTs in a broader range. Moreover, with the increase of the surfactant concentration, the electrothermal flow is enhanced, and with the change of frequency, the pattern of the electrothermal flow changes. It is shown that under some typical experimental conditions of dielectrophoresis separation of SWNTs, the electrothermal flow is a dominating factor in determining the motion of SWNTs.Comment: 5 pages, 4 figures, Submitted to PR

    Negative Parity Baryons in the QCD Sum Rule

    Get PDF
    Masses and couplings of the negative parity excited baryons are studied in the QCD sum rule. Separation of the negative-parity spectrum is proposed and is applied to the flavor octet and singlet baryons. We find that the quark condensate is responsible for the mass splitting of the ground and the negative-parity excited states. This is expected from the chiral symmetry and supports the idea that the negative-parity baryon forms a parity doublet with the ground state. The meson-baryon coupling constants are also computed for the excited states in the QCD sum rule. It is found that the \pi NN^* coupling vanishes in the chiral limit.Comment: 13pp, LaTeX, 1 EPS figure, uses epsf.sty, Talk given by M.O. at CEBAF/INT workshop "N* physics", Seattle, September (1996), to appear in the proceeding

    Keep the course: travelling penguins consistently orient toward the destination

    Get PDF
    The Tenth Symposium on Polar Science/Ordinary sessions : [OB] Polar Biology, Wed. 4 Dec. / Entrance Hall (1st floor) , National Institute of Polar Researc

    Anomalous Hall Effect in Ferromagnetic Metals: Role of Phonons at Finite Temperature

    Full text link
    The anomalous Hall effect in a multiband tight-binding model is numerically studied taking into account both elastic scattering by disorder and inelastic scattering by the electron-phonon interaction. The Hall conductivity is obtained as a function of temperature TT, inelastic scattering rate γ\gamma, chemical potential μ\mu, and impurity concentration ximpx_{\rm imp}. We find that the new scaling law holds over a wide range of these parameters; σxy=(ασxx01+βσxx02)σxx2+b-\sigma_{xy}= (\alpha \sigma_{xx0}^{-1} + \beta \sigma_{xx0}^{-2}) \sigma_{xx}^2 + b, with σμν\sigma_{\mu \nu} (σμν0\sigma_{\mu \nu 0}) being the conductivity tensor (with only elastic scattering), which corresponds to the recent experimental observation [Phys. Rev. Lett. {\bf 103} (2009) 087206]. The condition of this scaling is examined. Also, it is found that the intrinsic mechanism depends on temperature under a resonance condition.Comment: 5 figure

    Wide-Supply-Range All-Digital Leakage Variation Sensor for On-Chip Process and Temperature Monitoring

    Get PDF
    Variation in process, voltage and temperature is a major obstacle in achieving energy-efficient operation of LSI. This paper proposes an all-digital on-chip circuit to monitor leakage current variations of both of the nMOSFET and pMOSFET independently. As leakage current is highly sensitive to threshold voltage and temperature, the circuit is suitable for tracking process and temperature variation. The circuit uses reconfigurable inhomogeneity to obtain statistical properties from a single monitor instance. A compact reconfigurable inverter topology is proposed to implement the monitor circuit. The compact and digital nature of the inverter enables cell-based design, which will reduce design costs. Measurement results from a 65 nm test chip show the validity of the proposed circuit. For a 124 sample size for both of the nMOSFET and pMOSFET, the monitor area is 4500 μm2 and active power consumption is 76 nW at 0.8 V operation. The proposed technique enables area-efficient and low-cost implementation thus can be used in product chips for applications such as dynamic energy and thermal management, testing and post-silicon tuning
    corecore