768 research outputs found
Development of a hybrid multi-scale simulation approach for spray processes
This paper presents a multi-scale approach coupling a Eulerian interface-tracking method and a Lagrangian particle-tracking method to simulate liquid atomisation processes. This method aims to represent the complete spray atomisation process including the primary break-up process and the secondary break-up process, paving the way for high-fidelity simulations of spray atomisation in the dense spray zone and spray combustion in the dilute spray zone. The Eulerian method is based on the coupled level-set and volume-of-fluid method for interface tracking, which can accurately simulate the primary break-up process. For the coupling approach, the Eulerian method describes only large droplet and ligament structures, while small-scale droplet structures are removed from the resolved Eulerian description and transformed into Lagrangian point-source spherical droplets. The Lagrangian method is thus used to track smaller droplets. In this study, two-dimensional simulations of liquid jet atomisation are performed. We analysed Lagrangian droplet formation and motion using the multi-scale approach. The results indicate that the coupling method successfully achieves multi-scale simulations and accurately models droplet motion after the Eulerian–Lagrangian transition. Finally, the reverse Lagrangian–Eulerian transition is also considered to cope with interactions between Eulerian droplets and Lagrangian droplets.This work was supported by the Engineering and Physical Sciences Research Council of the UK (grant number EP/L000199/1)
Precise determination of two-carrier transport properties in the topological insulator TlBiSe
We report the electric transport study of the three-dimensional topological
insulator TlBiSe. We applied a newly developed analysis procedure and
precisely determined two-carrier transport properties. Magnetotransport
properties revealed a multicarrier conduction of high- and low-mobility
electrons in the bulk, which was in qualitative agreement with angle-resolved
photoemission results~[K. Kuroda , Phys. Rev. Lett. , 146801
(2010)]. The temperature dependence of the Hall mobility was explained well
with the conventional Bloch-Gr{\"u}neisen formula and yielded the Debye
temperature ~K. The results indicate that the
scattering of bulk electrons is dominated by acoustic phonons.Comment: 6 pages, 5 figures, to be published in Physical Review
Real-space observation of current-driven domain wall motion in submicron magnetic wires
Spintronic devices, whose operation is based on the motion of a magnetic
domain wall (DW), have been proposed recently. If a DW could be driven directly
by flowing an electric current instead of a magnetic field, the performance and
functions of such device would be drastically improved. Here we report
real-space observation of the current-driven DW motion by using a well-defined
single DW in a micro-fabricated magnetic wire with submicron width. Magnetic
force microscopy (MFM) visualizes that a single DW introduced in the wire is
displaced back and forth by positive and negative pulsed-current, respectively.
We can control the DW position in the wire by tuning the intensity, the
duration and the polarity of the pulsed-current. It is, thus, demonstrated that
spintronic device operation by the current-driven DW motion is possible.Comment: Accepted and published in PR
Physics of puffing and microexplosion of emulsion fuel droplets
The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.This article has been made available through the Brunel Open Access Publishing Fund
Controllable pi junction with magnetic nanostructures
We propose a novel Josephson device in which 0 and states are
controlled by an electrical current. In this system, the state appears in
a superconductor/normal metal/superconductor junction due to the non-local spin
accumulation in the normal metal which is induced by spin injection from a
ferromagnetic electrode. Our proposal offers not only new possibilities for
application of superconducting spin-electronic devices but also the in-depth
understanding of the spin-dependent phenomena in magnetic nanostructures.Comment: 4 pages, 3 figure
Propagation of a magnetic domain wall in magnetic wires with asymmetric notches
The propagation of a magnetic domain wall (DW) in a submicron magnetic wire
consisting of a magnetic/nonmagnetic/magnetic trilayered structure with
asymmetric notches was investigated by utilizing the giant magnetoresistance
effect. The propagation direction of a DW was controlled by a pulsed local
magnetic field, which nucleates the DW at one of the two ends of the wire. It
was found that the depinning field of the DW from the notch depends on the
propagation direction of the DW.Comment: 12 pages, 3 figure
Modeling temperature distribution inside an emulsion fuel droplet under convective heating: A key to predicting microexplosion and puffing
© 2016 by Begell House, Inc. Microexplosion/puffing is rapid disintegration of a water-in-oil emulsion droplet caused by explosive boiling of embedded superheated water sub-droplets. To predict microexplosion/puffing, modeling the temperature distribution inside an emulsion droplet under convective heating is a prerequisite, since the temperature field determines the location of nucleation (vapor bubble initiation from superheated water). In the first part of the present study, convective heating of water-in-oil emulsion droplets under typical combustor conditions is investigated using high-fidelity simulation in order to accurately model inner-droplet temperature distribution. The shear force due to the ambient air flow induces internal circulation inside a droplet. It has been found that for droplets under investigation in the present study, the liquid Peclet number PeL is in a transitional regime of 100 < PeL < 500. The temperature field is therefore somewhat distorted by the velocity field, but the distortion is not strong enough to form Hill's vortex for the temperature field. In the second part of the present study, a novel approach is proposed to model the temperature field distortion by introducing angular dependency of the thermal conductivity and eccentricity of the temperature field. The model can reproduce the main features of the temperature field inside an emulsion droplet, and can be used to predict the nucleation location, which is a key initial condition of microexplosion/puffing
Kinetics of crystallization of FeB-based amorphous alloys studied by neutron thermo-diffractometry
Kinetics of crystallization of two amorphous alloys, Fe70Cr10B20 and
Fe80Zr10B10, have been followed up by neutron thermodiffractometry experiments
performed in the two axis diffractometer D20 (ILL, Grenoble). The structural
changes are directly correlated with the temperature dependence of the
magnetization. Fe70Cr10B20 crystallizes following a two-step process: an
eutectic crystallization of alfa-Fe (bcc) and the metastable tetragonal phase
(Fe0.8Cr0.2)3B followed by another eutectic transformation to the stable phase
(Fe0.75Cr0.25)2B and more segregation of alfa-Fe. These tetragonal phases are
magnetically anisotropic, giving rise to a large increase of the coercivity.
This behaviour is similar to that of Fe80B20 alloys, with Cr atoms replacing
the Fe positions in both crystalline phases. Fe80Zr10B10 shows also a two-step
process in which two polymorphic transformations take place.Comment: 3 pages. Proceedings International Workshop Non-Crystalline Solids
2006, Gijon (Spain
GINA - A Polarized Neutron Reflectometer at the Budapest Neutron Centre
The setup, capabilities and operation parameters of the neutron reflectometer
GINA, the recently installed "Grazing Incidence Neutron Apparatus" at the
Budapest Neutron Centre, are introduced. GINA, a dance-floor-type,
constant-energy, angle-dispersive reflectometer is equipped with a 2D
position-sensitive detector to study specular and off-specular scattering.
Wavelength options between 3.2 and 5.7 {\AA} are available for unpolarized and
polarized neutrons. Spin polarization and analysis are achieved by magnetized
transmission supermirrors and radio-frequency adiabatic spin flippers. As a
result of vertical focusing by the five-element (pyrolytic graphite)
monochromator the reflected intensity from a 20x20 mm sample has doubled. GINA
is dedicated to studies of magnetic films and heterostructures, but unpolarized
options for non-magnetic films, membranes and other surfaces are also provided.
Shortly after its startup, reflectivity values as low as 3x10-5 have been
measured on the instrument. The facility is now open for the international user
community, but its development is continuing mainly to establish new sample
environment options, the spin analysis of off-specularly scattered radiation
and further decrease of the background
Bipolar-Driven Large Magnetoresistance in Silicon
Large linear magnetoresistance (MR) in electron-injected p-type silicon at
very low magnetic field is observed experimentally at room temperature. The
large linear MR is induced in electron-dominated space-charge transport regime,
where the magnetic field modulation of electron-to-hole density ratio controls
the MR, as indicated by the magnetic field dependence of Hall coefficient in
the silicon device. Contrary to the space-charge-induced MR effect in unipolar
silicon device, where the large linear MR is inhomogeneity-induced, our results
provide a different insight into the mechanism of large linear MR in
non-magnetic semiconductors that is not based on the inhomogeneity model. This
approach enables homogeneous semiconductors to exhibit large linear MR at low
magnetic fields that until now has only been appearing in semiconductors with
strong inhomogeneities.Comment: 23 pages, 4 figures (main text), 6 figures (supplemental material
- …