10 research outputs found

    Dehydroepiandrosterone inhibits the progression phase of mammary carcinogenesis by inducing cellular senescence via a p16-dependent but p53-independent mechanism

    Get PDF
    INTRODUCTION: Dehydroepiandrosterone (DHEA), an adrenal 17-ketosteroid, is a precursor of testosterone and 17β-estradiol. Studies have shown that DHEA inhibits carcinogenesis in mammary gland and prostate as well as other organs, a process that is not hormone dependent. Little is known about the molecular mechanisms of DHEA-mediated inhibition of the neoplastic process. Here we examine whether DHEA and its analog DHEA 8354 can suppress the progression of hyperplastic and premalignant (carcinoma in situ) lesions in mammary gland toward malignant tumors and the cellular mechanisms involved. METHODS: Rats were treated with N-nitroso-N-methylurea and allowed to develop mammary hyperplastic and premalignant lesions with a maximum frequency 6 weeks after carcinogen administration. The animals were then given DHEA or DHEA 8354 in the diet at 125 or 1,000 mg/kg diet for 6 weeks. The effect of these agents on induction of apoptosis, senescence, cell proliferation, tumor burden and various effectors of cellular signaling were determined. RESULTS: Both agents induced a dose-dependent decrease in tumor multiplicity and in tumor burden. In addition they induced a senescent phenotype in tumor cells, inhibited cell proliferation and increased the number of apoptotic cells. The DHEA-induced cellular effects were associated with increased expression of p16 and p21, but not p53 expression, implicating a p53-independent mechanism in their action. CONCLUSION: We provide evidence that DHEA and DHEA 8354 can suppress mammary carcinogenesis by altering various cellular functions, inducing cellular senescence, in tumor cells with the potential involvement of p16 and p21 in mediating these effects

    p28, A first in class peptide inhibitor of cop1 binding to p53

    No full text
    BACKGROUND: A 28 amino-acid (aa) cell-penetrating peptide (p28) derived from azurin, a redox protein secreted from the opportunistic pathogen Pseudomonas aeruginosa, produces a post-translational increase in p53 in cancer cells by inhibiting its ubiquitination. METHODS: In silico computational simulations were used to predict motifs within the p53 DNA-binding domain (DBD) as potential sites for p28 binding. In vitro direct and competitive pull-down studies as well as western blot and RT-PCR analyses were used to validate predictions. RESULTS: The L1 loop (aa 112–124), a region within the S7–S8 loop (aa 214–236) and T140, P142, Q144, W146, R282 and L289 of the p53DBD were identified as potential sites for p28 binding. p28 decreased the level of the E3 ligase COP1 >80%, in p53(wt) and p53(mut) cells with no decrease in COP1 in p53dom/neg or p53null cells. Brief increases in the expression of the E3 ligases, TOPORS, Pirh2 and HDM2 (human double minute 2) in p53(wt) and p53(mut) cells were in response to sustained increases in p53. CONCLUSION: These data identify the specific motifs within the DBD of p53 that bind p28 and suggest that p28 inhibition of COP1 binding results in the sustained, post-translational increase in p53 levels and subsequent inhibition of cancer cell growth independent of an HDM2 pathway
    corecore