27 research outputs found

    Digital Binary Codes Transmission via TDMA Networks Communication System Using Dark and Bright Optical Soliton

    Get PDF
    In this study, new system of microring resonator forquantum cryptography in network communication is proposed.optical potential well can be generated and propagate via anonlinear modified add/drop interferometer systemincorporated with a beam splitter and a time division multipleaccess (TDMA) system wherein the quantum binary codes canbe generated, propagated and transmitted. A system known asoptical multiplexer can be used to increase the channel capacityand security of the signals, where the beam splitters generatehigh capacity of binary codes within the proposed system.Therefore, ring resonator system is used to form the opticalpotential wells. The multiplexed potential wells are formed andtransmit via an available link, where the logic codes can be sentout with different time, used for high capacity transmission ofthe secured data. In this work narrow pulses with FHHM of 9.57nm and 8 nm could be obtained from the drop and throughports of the add/drop interferometer system respectively. Theoutputs of different center wavelengths are combined and usedto generate multiple potential well signals, where the multiplesignals with FWHM and FSR of 0.8 nm and 5 nm could beobtained respectively. Digital codes can be generated andtransmitted via communication networks systems such as timedivision multiple access (TDMA) using dark and bright solitonpulses with FHHM and FSR of 0.54 nm and 4.71 nm

    Generation of Quantum Photon Information Using Extremely Narrow Optical Tweezers for Computer Network Communication

    Get PDF
    A system of microring resonator (MRR) is presentedto generate extremely narrow optical tweezers. An add/dropfilter system consisting of one centered ring and one smaller ringon the left side can be used to generate extremely narrow pulseof optical tweezers. Optical tweezers generated by the dark-Gaussian behavior propagate via the MRRs system, where theinput Gaussian pulse controls the output signal at the drop portof the system. Here the output optical tweezers can be connectedto a quantum signal processing system (receiver), where it can beused to generate high capacity quantum codes within series ofMRR’s and an add/drop filter. Detection of the encoded signalsknown as quantum bits can be done by the receiver unit system.Generated entangled photon pair propagates via an opticalcommunication link. Here, the result of optical tweezers with fullwidth at half maximum (FWHM) of 0.3 nm, 0.8 nm and 1.6 nm,1.3 nm are obtained at the through and drop ports of the systemrespectively. These results used to be transmitted through aquantum signal processor via an optical computer networkcommunication link

    Generation of discrete frequency and wavelength for secured computer networks system using integrated ring resonators

    Get PDF
    In this study, a system of discrete optical pulse generation via a series of microring resonator (MRR) is presented. Chaotic signals can be generated by an optical soliton or a Gaussian pulse within a MRR system. Large bandwidth signals of optical soliton are generated by input pulse propagating within the MRRs, which can be used to form continuous wavelength or frequency with large tunable channel capacity. Therefore, distinguished discrete wavelength or frequency pulses can be generated by using localized spatial pulses via a networks communication system. Selected discrete pulses are more suitable to generate high-secured quantum codes because of the large free spectral range (FSR). Quantum codes can be generated by using a polarization control unit and a beam splitter, incorporating to the MRRs. In this work, frequency band of 10.7 MHz and 16 MHz and wavelengths of 206.9 nm, 1448 nm, 2169 nm and 2489 nm are localized and obtained which can be used for quantum codes generation applicable for secured networks communication

    Multi optical Soliton generated by PANDA ring resonator for secure network communication

    Get PDF
    In this study, new system of quantum cryptography for network communication is proposed. Multi optical Soliton can be generated and propagate via a nonlinear modified add/drop interferometer system incorporated with a time division multiple access (TDMA) system wherein the transportation of quantum codes is performed. To increase the channel capacity and security of the signals, the PANDA ring resonator is proposed. Chaotic output signals from the PANDA ring resonator are input into the add/drop filter system. Chaotic signals can be filtered by using the add/drop filter system in which multi dark and bright solitons can be obtained and used to generate entangled quantum codes for internet security. In this study soliton pulses with FWHM and FSR of 325 pm and 880 nm are generated, respectively, where the Gaussian pulse with a centre wavelength of 1.55 µm and power of 600 mW is input into the system

    MRR quantum dense coding for optical wireless communication system using decimal convertor

    Get PDF
    In this study, simply two systems consist of series of microring resonators (MRRs) and a add/drop filter are used to generate a large bandwidth signal as localized multi wavelength, applicable for quantum dense coding (QDC) and continuous variable encoding generation using incorporated system. This technique uses the Kerr nonlinear type of light in the MRR to generate multi wavelength for desired application especially in internet security and quantum network cryptography. Quantum dense encoding can be perform by output signals of selected wavelengths which are incorporated to a polarization control system in which dark and bright optical soliton pulses with different time slot are generated. Generated dark and bright optical pulses can be converted into digital logic quantum codes using a decimal convertor system in which transmission of secured information are perform via a wireless network communication system. Results show that multi soliton wavelength, ranged from 1.55µm to 1.56µm with FWHM and FSR of 10 pm and 600 pm can be generated respectively

    Network system engineering by controlling the chaotic signals using silicon micro ring resonator

    Get PDF
    We investigate nonlinear behaviors of light known as bifurcation and chaos within a nonlinear silicon microring resonator (SMRR). The research is used to controlling SMRR's behaviors such as chaos applicable in security coding systems. The variable parameters affect the bifurcation to be happened in smaller roundtrip among total round trip of 20000 or input power. Simulated Results show that rising of the nonlinear refractive indices, coupling coefficients and radius of the SMRR leads to descending in input power and round trips wherein the bifurcation occurs. As result, bifurcation or chaos behaviors are seen at lower input power of 44 W, where the nonlinear refractive index is n 2=3.2×10 -20 m 2/W. Smallest round trips of 4770 and 5720 can be seen for the R=40 µm and ? = 0.1 respectively. The controlled chaotic signals from the SMRR are passing through a polarizer beam splitter to generate quantum binary codes which are used in wireless network communication

    The proposal of high capacity GHZ soliton carrier signals applied for wireless communication

    No full text
    Nonlinear behavior of light inside the microring resonator (MRR) show very interesting phenomena where the high capacity ranges can be obtained for long distance communication. Optical soliton is a self-reinforcing solitary wave that maintains its shape while it travels at constant speed. MRR can be an interesting tool to generate solitonic pulses needed in wireless communication systems. To make the proposed systems with practical device, the suitable parameters are used to adjust and provide the output results. Wireless networks have some advantage comparing with wire networks such as the cabling is not required and mobility services. OFDM is a widely used modulation and multiplexing technology which has become the basis of many telecommunications standards for both wired and wireless communication networks. The basic principle of OFDM is to split a high-rate data stream into a number of lower rate streams that are transmitted simultaneously over a number of subcarriers. In this proposal we discuss the generating of carrier signals using soliton pulses for OFDM modulation. The mathematical equation of the ring system is solved using the Z-transform method, where the simulation of the result is handled by coding the equations using the MATLAB software licensed by the Universiti Teknologi Malaysia (UTM)

    Solitonic pulse generation for inter-satellite optical wireless communication

    No full text
    In this paper, a system consist of series of microring resonators (MRRs) and an add/drop filter are used to generate a large bandwidth signal as localized multi wavelength, applicable for inter-satellite optical wireless communication. This technique uses the Kerr nonlinear type of light in the MRR to generate multi wavelength for desired application in inter-satellite communication. Results show that multi soliton wavelength, ranged from 900 nm to 1228 with FWHM and FSR of 35 pm and 500 pm can be generated respectively
    corecore