640 research outputs found

    Interelectronic-interaction effect on the transition probability in high-Z He-like ions

    Full text link
    The interelectronic-interaction effect on the transition probabilities in high-Z He-like ions is investigated within a systematic quantum electrodynamic approach. The calculation formulas for the interelectronic-interaction corrections of first order in 1/Z are derived using the two-time Green function method. These formulas are employed for numerical evaluations of the magnetic transition probabilities in heliumlike ions. The results of the calculations are compared with experimental values and previous calculations

    QED theory of the nuclear recoil effect in atoms

    Get PDF
    The quantum electrodynamic theory of the nuclear recoil effect in atoms to all orders in \alpha Z is formulated. The nuclear recoil corrections for atoms with one and two electrons over closed shells are considered in detail. The problem of the composite nuclear structure in the theory of the nuclear recoil effect is discussed.Comment: 20 pages, 6 figures, Late

    QED theory of the nuclear recoil effect on the atomic g factor

    Full text link
    The quantum electrodynamic theory of the nuclear recoil effect on the atomic g factor to all orders in \alpha Z and to first order in m/M is formulated. The complete \alpha Z-dependence formula for the recoil correction to the bound-electron g factor in a hydrogenlike atom is derived. This formula is used to calculate the recoil correction to the bound-electron g factor in the order (\alpha Z)^2 m/M for an arbitrary state of a hydrogenlike atom.Comment: 17 page

    Relativistic recoil, electron-correlation, and QED effects on the 2p_j-2s transition energies in Li-like ions

    Full text link
    The relativistic nuclear recoil, higher-order interelectronic-interaction, and screened QED corrections to the transition energies in Li-like ions are evaluated. The calculation of the relativistic recoil effect is performed to all orders in 1/Z. The interelectronic-interaction correction to the transition energies beyond the two-photon exchange level is evaluated to all orders in 1/Z within the Breit approximation. The evaluation is carried out employing the large-scale configuration-interaction Dirac-Fock-Sturm method. The rigorous calculation of the complete gauge invariant sets of the screened self-energy and vacuum-polarization diagrams is performed utilizing a local screening potential as the zeroth-order approximation. The theoretical predictions for the 2p_j-2s transition energies are compiled and compared with available experimental data in the range of the nuclear charge number Z=10-60.Comment: 39 pages, 3 figures, 11 table

    Nuclear recoil effect on the magnetic-dipole decay rates of atomic levels

    Full text link
    The effect of finite nuclear mass on the magnetic-dipole transition probabilities between fine-structure levels of the same term is investigated. Based on a rigorous QED approach a nonrelativistic formula for the recoil correction to first order in m_e/M is derived. Numerical results for transitions of experimental interest are presented.Comment: 9 page
    • …
    corecore