862 research outputs found
QED theory of the nuclear recoil effect in atoms
The quantum electrodynamic theory of the nuclear recoil effect in atoms to
all orders in \alpha Z is formulated. The nuclear recoil corrections for atoms
with one and two electrons over closed shells are considered in detail. The
problem of the composite nuclear structure in the theory of the nuclear recoil
effect is discussed.Comment: 20 pages, 6 figures, Late
Interelectronic-interaction effect on the transition probability in high-Z He-like ions
The interelectronic-interaction effect on the transition probabilities in
high-Z He-like ions is investigated within a systematic quantum electrodynamic
approach. The calculation formulas for the interelectronic-interaction
corrections of first order in 1/Z are derived using the two-time Green function
method. These formulas are employed for numerical evaluations of the magnetic
transition probabilities in heliumlike ions. The results of the calculations
are compared with experimental values and previous calculations
QED theory of the nuclear recoil effect on the atomic g factor
The quantum electrodynamic theory of the nuclear recoil effect on the atomic
g factor to all orders in \alpha Z and to first order in m/M is formulated. The
complete \alpha Z-dependence formula for the recoil correction to the
bound-electron g factor in a hydrogenlike atom is derived. This formula is used
to calculate the recoil correction to the bound-electron g factor in the order
(\alpha Z)^2 m/M for an arbitrary state of a hydrogenlike atom.Comment: 17 page
Two-loop self-energy contribution to the Lamb shift in H-like ions
The two-loop self-energy correction is evaluated to all orders in Z\alpha for
the ground-state Lamb shift of H-like ions with Z >= 10, where Z is the nuclear
charge number and \alpha is the fine structure constant. The results obtained
are compared with the analytical values for the Z\alpha-expansion coefficients.
An extrapolation of the all-order numerical results to Z=1 is presented and
implications of our calculation for the hydrogen Lamb shift are discussed
Dynamically assisted Schwinger effect beyond the spatially-uniform-field approximation
We investigate the phenomenon of electron-positron pair production from
vacuum in the presence of a strong electric field superimposed by a weak but
fast varying pulse which substantially increases the total particle yield. We
employ a nonperturbative numerical technique and perform the calculations
beyond the spatially-uniform-field approximation, i.e. dipole approximation,
taking into account the coordinate dependence of the fast component. The
analysis of the main characteristics of the pair-production process (momentum
spectra of particles and total amount of pairs) reveals a number of important
features which are absent within the previously used approximation. In
particular, the structure of the momentum distribution is modified both
qualitatively and quantitatively, and the total number of pairs created as well
as the enhancement factor due to dynamical assistance become significantly
smaller.Comment: 22 pages, 11 figures, 3 table
Mathematical Structure of Relativistic Coulomb Integrals
We show that the diagonal matrix elements where
are the standard Dirac matrix operators
and the angular brackets denote the quantum-mechanical average for the
relativistic Coulomb problem, may be considered as difference analogs of the
radial wave functions. Such structure provides an independent way of obtaining
closed forms of these matrix elements by elementary methods of the theory of
difference equations without explicit evaluation of the integrals. Three-term
recurrence relations for each of these expectation values are derived as a
by-product. Transformation formulas for the corresponding generalized
hypergeometric series are discussed.Comment: 13 pages, no figure
- …
