109 research outputs found

    The Small Satellite-Based, Imaging X-Ray Polarimeter Explorer (IXPE) Mission

    Get PDF
    The Imaging X-ray Polarimeter Explorer (IXPE) focuses on high energy astrophysics in the 2—8 keV x-ray band. IXPE is designed to explore general relativistic and quantum physics effects of gravity, energy, electric and magnetic fields at extreme limits. IXPE, a NASA Small Explorer (SMEX) Mission, will add new dimensions to on-orbit x-ray science: polarization degree, polarization angle and extended object polarization imaging. Polarization uniquely probes physical anisotropies that are not otherwise measurable—ordered magnetic fields, aspheric matter distributions, or general relativistic coupling to black-hole spin. Detailed imaging enables the specific properties of extended x-ray sources to be differentiated. The IXPE Observatory consists of spacecraft and payload modules built up in parallel to form the Observatory during system integration and test. The payload includes three polarization-sensitive, x-ray detector arrays paired with three x-ray mirror module assemblies (MMA). A deployable boom provides the correct separation (focal length) between the detector units and MMAs. Currently, the boom has been delivered, all four detectors units (DU) are complete, the detectors service unit (DSU) is complete, instrument system testing has been completed (DSU with 3 DUs), three of four MMAs is built and all spacecraft components except the solar array have been delivered along with the spacecraft and payload structures. Payload and spacecraft integration and test (I&T) started in March 2020. This paper overviews the flight segment (the Observatory, payload, and spacecraft implementation concepts) with emphasis on the build status and summarizes the launch segment. Launch is planned to occur on a Falcon 9 launch vehicle during Summer 2021. The paper summarizes the impacts of switching from the ‘design-to baseline’ of Pegasus XL to the selected launch vehicle for flight, Falcon 9. COVID-19 impacts to the Project are also summarized. The paper will close with a summary of the mission development status. The Project is firmly into the build phase for both the spacecraft and payload and rapidly approaching Observatory I&T

    Foregrounds in wide-field redshifted 21 cm power spectra

    Get PDF
    Detection of 21 cm emission of H I from the epoch of reionization, at redshifts z > 6, is limited primarily by foreground emission. We investigate the signatures of wide-field measurements and an all-sky foreground model using the delay spectrum technique that maps the measurements to foreground object locations through signal delays between antenna pairs. We demonstrate interferometric measurements are inherently sensitive to all scales, including the largest angular scales, owing to the nature of wide-field measurements. These wide-field effects are generic to all observations but antenna shapes impact their amplitudes substantially. A dish-shaped antenna yields the most desirable features from a foreground contamination viewpoint, relative to a dipole or a phased array. Comparing data from recent Murchison Widefield Array observations, we demonstrate that the foreground signatures that have the largest impact on the H I signal arise from power received far away from the primary field of view. We identify diffuse emission near the horizon as a significant contributing factor, even on wide antenna spacings that usually represent structures on small scales. For signals entering through the primary field of view, compact emission dominates the foreground contamination. These two mechanisms imprint a characteristic pitchfork signature on the "foreground wedge" in Fourier delay space. Based on these results, we propose that selective down-weighting of data based on antenna spacing and time can mitigate foreground contamination substantially by a factor of ∼100 with negligible loss of sensitivity

    Lactational coumestrol exposure increases ovarian apoptosis in adult rats

    Get PDF
    This study is the first to examine the increased apoptosis in the adult rat ovary after lactational exposure to coumestrol (COU), a potent phytoestrogen. Lactating dams were gavaged at doses of 0.01, 0.1, 1, and 10 mg/kg COU during the lactation period and the reproductive effects of female pups were investigated in young adults. Rats were sacrificed at postnatal days (PND) 81–84. Ovarian weights were reduced significantly at 0.1 and 1.0 mg/kg COU. The reduction in the ovarian weight occurred in parallel with an increase in the apoptosis at PND 135–140. A marked dose-dependent increase in the expressions of active caspase-3 and -7 was observed in ovarian granulosa cells. Immunostaining for active caspase-3 and the TUNEL staining of apoptotic cells were also increased in ovaries exposed to COU in a dose-dependent manner. These results suggest new sights into the effect of lactational exposure to COU on the female reproductive health

    The Importance of Wide-field Foreground Removal for 21 cm Cosmology: A Demonstration with Early MWA Epoch of Reionization Observations

    Get PDF
    In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experiments. We begin with a heuristic formalism for understanding the mapping of sky coordinates into the cylindrically averaged power spectra measurements used by 21 cm experiments, with a focus on the effects of the instrument beam response and the associated sidelobes. We then demonstrate this mapping by analyzing power spectra with both simulated and observed data from the Murchison Widefield Array. We find that removing a foreground model that includes sources in both the main field of view and the first sidelobes reduces the contamination in high k∥ modes by several per cent relative to a model that only includes sources in the main field of view, with the completeness of the foreground model setting the principal limitation on the amount of power removed. While small, a percent-level amount of foreground power is in itself more than enough to prevent recovery of any Epoch of Reionization signal from these modes. This result demonstrates that foreground subtraction for redshifted 21 cm experiments is truly a wide-field problem, and algorithms and simulations must extend beyond the instrument’s main field of view to potentially recover the full 21 cm power spectrum
    • …
    corecore