798 research outputs found

    Coefficient of restitution for viscoelastic disks

    Full text link
    The dissipative collision of two identical viscoelastic disks is studied. By using a known law for the elastic part of the interaction force and the viscoelastic damping model an analytical solution for the coefficient of restitution shall be given. The coefficient of restitution depends significantly on the impact velocity. It approaches one for small velocities and decreases for increasing velocities.Comment: 11 pages, 3 figure

    Non-Abelian Duality for Open Strings

    Get PDF
    We examine non-abelian duality transformations in the open string case. After gauging the isometries of the target space and developing the general formalism, we study in details the duals oftarget spaces with SO(N) isometries which, for the SO(2) case, reduces to the known abelian T-duals. We apply the formalism to electrically and magnetically charged 4D black hole solutions and, as in the abelian case, dual coordinates satisfy Dirichlet conditions.Comment: 18 pages, Latex. Some formulas are added. Final version to appear in Nucl. Phys.

    Rolling friction of a hard cylinder on a viscous plane

    Full text link
    The resistance against rolling of a rigid cylinder on a flat viscous surface is investigated. We found that the rolling-friction coefficient reveals strongly non-linear dependence on the cylinder's velocity. For low velocity the rolling-friction coefficient rises with velocity due to increasing deformation rate of the surface. For larger velocity, however, it decreases with velocity according to decreasing contact area and deformation of the surface.Comment: 7 pages, 3 figure

    Coefficient of Restitution as a Fluctuating Quantity

    Full text link
    The coefficient of restitution of a spherical particle in contact with a flat plate is investigated as a function of the impact velocity. As an experimental observation we notice non-trivial (non-Gaussian) fluctuations of the measured values. For a fixed impact velocity, the probability density of the coefficient of restitution, p(ϵ)p(\epsilon), is formed by two exponential functions (one increasing, one decreasing) of different slope. This behavior may be explained by a certain roughness of the particle which leads to energy transfer between the linear and rotational degrees of freedom.Comment: 4 pages, 4 figure

    Virtual Organization as a Source of Competitive Advantage: A Framework from the Resource-Based View

    Get PDF
    A framework is developed for viewing the centralization issues of organizations to consider to what degree a virtual organization may help a firm obtain competitive advantage. Utilizing the concepts of flexibility and synergy, the framework can serve as a guide for practitioners to help determine what degree of synergy and flexibility a given organizational form would bring and what its suggested category of competitive advantage would be. Implications and suggestions for future research are also discussed

    Coefficient of tangential restitution for the linear dashpot model

    Full text link
    The linear dashpot model for the inelastic normal force between colliding spheres leads to a constant coefficient of normal restitution, ϵn=\epsilon_n=const., which makes this model very popular for the investigation of dilute and moderately dense granular systems. For two frequently used models for the tangential interaction force we determine the coefficient of tangential restitution ϵt\epsilon_t, both analytically and by numerical integration of Newton's equation. Although ϵn=\epsilon_n=const. for the linear-dashpot model, we obtain pronounced and characteristic dependencies of the tangential coefficient on the impact velocity ϵt=ϵt(g⃗)\epsilon_t=\epsilon_t(\vec{g}). The results may be used for event-driven simulations of granular systems of frictional particles.Comment: 12 pages, 12 figure

    Guarantees on Robot System Performance Using Stochastic Simulation Rollouts

    Full text link
    We provide finite-sample performance guarantees for control policies executed on stochastic robotic systems. Given an open- or closed-loop policy and a finite set of trajectory rollouts under the policy, we bound the expected value, value-at-risk, and conditional-value-at-risk of the trajectory cost, and the probability of failure in a sparse rewards setting. The bounds hold, with user-specified probability, for any policy synthesis technique and can be seen as a post-design safety certification. Generating the bounds only requires sampling simulation rollouts, without assumptions on the distribution or complexity of the underlying stochastic system. We adapt these bounds to also give a constraint satisfaction test to verify safety of the robot system. Furthermore, we extend our method to apply when selecting the best policy from a set of candidates, requiring a multi-hypothesis correction. We show the statistical validity of our bounds in the Ant, Half-cheetah, and Swimmer MuJoCo environments and demonstrate our constraint satisfaction test with the Ant. Finally, using the 20 degree-of-freedom MuJoCo Shadow Hand, we show the necessity of the multi-hypothesis correction.Comment: Submitted to IEEE-TR

    Teachers' Perceptions of Sae Programs and Benefits for Students with Special Needs in Oklahoma

    Get PDF
    Agricultural Education, Communications, and 4-H Youth Developmen
    • …
    corecore