148 research outputs found
Thermoelectric effects in correlated quantum dots and molecules
We investigate thermoelectric properties of correlated quantum dots and
molecules, described by a single level Anderson model coupled to conduction
electron leads, by using Wilson's numerical renormalization group method. In
the Kondo regime, the thermopower, , exhibits two sign changes, at
temperatures and . We find that is of order
the level width and , where is the
position of the Kondo induced peak in the thermopower and is the Kondo
scale. No sign change is found outside the Kondo regime, or, for weak
correlations, making a sign change in a particularly sensitive signature
of strong correlations and Kondo physics. For molecules, we investigate the
effect of screening by conduction electrons on the thermoelectric transport. We
find that a large screening interaction enhances the figure of merit in the
Kondo and mixed valence regimes.Comment: 4 pages, 3 figures; to appear in the Proceedings of the International
Conference on Strongly Correlated Electron Systems, Santa Fe 2010; revised
version: typos corrected and references update
Stability of quantum-dot excited-state laser emission under simultaneous ground-state perturbation
The impact of ground state amplification on the laser emission of In(Ga)As
quantum dot excited state lasers is studied in time-resolved experiments. We
find that a depopulation of the quantum dot ground state is followed by a drop
in excited state lasing intensity. The magnitude of the drop is strongly
dependent on the wavelength of the depletion pulse and the applied injection
current. Numerical simulations based on laser rate equations reproduce the
experimental results and explain the wavelength dependence by the different
dynamics in lasing and non-lasing sub-ensembles within the inhomogeneously
broadened quantum dots. At high injection levels, the observed response even
upon perturbation of the lasing sub-ensemble is small and followed by a fast
recovery, thus supporting the capacity of fast modulation in dual-state
devices
Surfactant-mediated variation of band-edge emission in CdS nanocomposites
The optical-structural characteristics of the direct optical band-gap semiconducting series of surfactant template-mediated laminar (CdS)x(CdCl2)y(CnH2n+4N)z nanocomposites are reported. X-ray diffraction measurements of the nanocomposites exhibited interlaminar distances in the range 2.9-3.6 nm with observations of eighth order {0 0 l} diffraction planes indicative of a high degree of laminarity and crystallographic order. Diffuse reflectance measurements have determined that the profile of their emission spectrum is that of a direct band-gap with absorption edges in the range 2.11-2.40 eV, depending on the CdS mole fraction in the nanocomposite. Photoluminescence (PL) excitation and time-resolved PL spectroscopies give an estimate of the maximum relative absorbance of the nanocomposites at âŒ420 nm while the minimum was observed at âŒ560 nm. The main emission was observed at âŒ700 nm with emission from doubly ionized sulphur vacancies observed at âŒ615 nm at room temperature. The CdS-containing nanocomposite is thus a surfactant-mediated modular system with variable band-gap energy emission
Pulsed EPR dipolar spectroscopy at Q- and G-band on a trityl biradical
Post-print (lokagerð höfundar)Pulsed electron paramagnetic resonance (EPR) spectroscopy is a valuable technique for the precise determination of distances between paramagnetic spin labels that are covalently attached to macromolecules. Nitroxides have commonly been utilised as paramagnetic tags for biomolecules, but trityl radicals have recently been developed as alternative spin labels. Trityls exhibit longer electron spin relaxation times and higher stability than nitroxides under in vivo conditions. So far, trityl radicals have only been used in pulsed EPR dipolar spectroscopy (PDS) at X-band (9.5 GHz), K-u-band (17.2 GHz) and Q-band (34 GHz) frequencies. In this study we investigated a trityl biradical by PDS at Q-band (34 GHz) and G-band (180 GHz) frequencies. Due to the small spectral width of the trityl (30 MHz) at Q-band frequencies, single frequency PDS techniques, like double-quantum coherence (DQC) and single frequency technique for refocusing dipolar couplings (SIFTER), work very efficiently. Hence, Q-band DQC and SIFTER experiments were performed and the results were compared; yielding a signal to noise ratio for SIFTER four times higher than that for DQC. At G-band frequencies the resolved axially symmetric g-tensor anisotropy of the trityl exhibited a spectral width of 130 MHz. Thus, pulsed electron electron double resonance (PELDOR/DEER) obtained at different pump-probe positions across the spectrum was used to reveal distances. Such a multi-frequency approach should also be applicable to determine structural information on biological macromolecules tagged with trityl spin labels.The authors acknowledge Dr Vasyl Denysenkov for the technical support with the G-band EPR spectrometer and Dr Alice Bowen for useful discussions and for proof reading the manuscript. This work is supported by SPP 1601 New Frontiers in Sensitivity for EPR Spectroscopy: from Biological Cells to Nano Materials from the German Research Society DFG, the Cluster of Excellence Frankfurt (CEF) Macromolecular Complexes and the Icelandic Research Fund (120001021), which are all gratefully acknowledged.Peer reviewe
Numerical analysis of the screening current-induced magnetic field in the HTS insert dipole magnet Feather-M2.1-2
Screening currents are field-induced dynamic phenomena which occur in superconducting materials, leading to persistent magnetization. Such currents are of importance in ReBCO tapes, where the large size of the superconducting filaments gives rise to strong magnetization phenomena. In consequence, superconducting accelerator magnets based on ReBCO tapes might experience a relevant degradation of the magnetic field quality in the magnet aperture, eventually leading to particle beam instabilities. Thus, persistent magnetization phenomena need to be accurately evaluated. In this paper, the 2D finite element model of the Feather-M2.1-2 magnet is presented. The model is used to analyze the influence of the screening current-induced magnetic field on the field quality in the magnet aperture. The model relies on a coupled field formulation for eddy current problems in time-domain. The formulation is introduced and verified against theoretical references. Then, the numerical model of the Feather-M2.1-2 magnet is detailed, highlighting the key assumptions and simplifications. The numerical results are discussed and validated with available magnetic measurements. A satisfactory agreement is found, showing the capability of the numerical tool in providing accurate analysis of the dynamic behavior of the Feather-M2.1-2 magnet
Systems of Differential Algebraic Equations in Computational Electromagnetics
Starting from space-discretisation of Maxwell's equations, various classical
formulations are proposed for the simulation of electromagnetic fields. They
differ in the phenomena considered as well as in the variables chosen for
discretisation. This contribution presents a literature survey of the most
common approximations and formulations with a focus on their structural
properties. The differential-algebraic character is discussed and quantified by
the differential index concept
High-temperature superconducting screens for magnetic field-error cancellation in accelerator magnets
Accelerators magnets must have minimal magnetic field imperfections to reduce particle-beam instabilities. In the case of coils made of high-temperature superconducting (HTS) tapes, the magnetization due to persistent currents adds an undesired field contribution, potentially degrading the magnetic field quality. In this paper we study the use of superconducting screens based on HTS tapes for reducing the magnetic field imperfections in accelerator magnets. The screens exploit the magnetization by persistent currents to cancel out the magnetic field error. The screens are aligned with the main field component, such that only the undesired field components are compensated. The screens are self-regulating, and do not require any externally applied source of energy. Measurements in liquid nitrogen at 77 K show for dipole-field configurations a significant reduction of the magnetic field error up to a factor of four. The residual error is explained via numerical simulations accounting for the geometric defects in the HTS screens, achieving satisfactory agreement with experimental results. Simulations show that if screens are increased in width and thickness, and operated at 4.5 K, field errors may be eliminated almost entirely for the typical excitation cycles of accelerator magnets
- âŠ