197 research outputs found

    Same-sign trileptons and four-leptons as signatures of new physics at the Large Hadron Collider

    Full text link
    We point out that same-sign multilepton events, not given due attention yet for new physics search, can be extremely useful at the Large Hadron Collider. After showing the easy reducibility of the standard model backgrounds, we demonstrate the viability of same-sign trilepton signals for R-parity breaking supersymmetry, at both 7 and 14 TeV. We find that same-sign four-leptons, too, can have appreciable rates. Same-sign trileptons are also expected, for example, in Little Higgs theories with T-parity broken by anomaly terms.Comment: 5 pages, 1 figure; v2: minor additions to text, references added, version to appear in Physical Review D (Rapid Communications

    Ethyl 4-(4′-heptanoyloxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-one-5-carboxylate Prevents Progression of Monocrotaline-induced Pulmonary Arterial Hypertension in Rats

    Get PDF
    Therapies to prevent onset and progression of pulmonary arterial pressure are not very effective yet. This study was designed to investigate the effects of a novel dihydropyrimidinone, ethyl 4-(4′-heptanoyloxyphenyl)-6-methyl-3,4-dihydropyrimidin-2-one-5-carboxylate (H-DHPM) on pathogenesis of monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH). For the same purpose, rats were injected intraperitoneally (i.p.) a single dose (60 mg/kg) of MCT which led to development of PAH in 21 days. MCT insult caused high mortality, pulmonary vascular and parenchymal remodelling. Since the course of PAH pathogenesis is characterised by an early onset and progression phases, H-DHPM was administered i.p. at 30 mg/kg dosage in MCT pre-injected animals either from day 0 through day 21 or day 14 though day 21 of MCT injection in two separate treatment groups. H-DHPM significantly improved survival, prevented remodelling of pulmonary vasculature and parenchyma and subsequently ameliorated PAH pathogenesis. Moreover, we observed significant decrease in right ventricle hypertrophy, measured by wet weight of right ventricle (RV) divided by wet weight of left ventricle plus septum (LV+S), in H-DHPM treated groups as compared to MCT injected animals. These findings suggest H-DHPM not only prevented development of PAH but also treated the PAH pathogenesis in progressive phase. In conclusion, our data determines H-DHPM, might be a future drug for the prevention of PAH

    Size-controlled synthesis of monodispersed gold nanoparticles via carbon monoxide gas reduction

    Get PDF
    An in depth analysis of gold nanoparticle (AuNP) synthesis and size tuning, utilizing carbon monoxide (CO) gas as a reducing agent, is presented for the first time. The sizes of the AuNPs are tunable from ~4 to 100 nm by altering the concentration of HAuCl4 and inlet CO gas-injection flow rate. It is also found that speciation of aqueous HAuCl4, prior to reduction, influences the size, morphology, and properties of AuNPs when reduced with CO gas. Ensemble extinction spectra and TEM images provide clear evidence that CO reduction offers a high level of monodispersity with standard deviations as low as 3%. Upon synthesis, no excess reducing agent remains in solution eliminating the need for purification. The time necessary to synthesize AuNPs, using CO, is less than 2 min

    Unitarity of the Higher Dimensional Standard Model

    Get PDF
    We study the unitarity of the standard model (SM) in higher dimensions. We show that the essential features of SM unitarity remain after compactification, and place bounds on the highest Kaluza-Klein (KK) level N_KK and the Higgs mass m_H in the effective four-dimensional (4d) low-energy theory. We demonstrate these general observations by explicitly analyzing the effective 4d KK theory of a compactified 5d SM on S^1/Z_2. The nontrivial energy cancellations in the scattering of longitudinal KK gluons or KK weak bosons, a consequence of the geometric Higgs mechanism, are verified. In the case of the electroweak gauge bosons, the longitudinal KK states also include a small mixture from the KK Higgs excitations. With the analyses before and after compactification, we derive the strongest bounds on N_KK from gauge KK scattering. Applying these bounds to higher-dimensional SUSY GUTs implies that only a small number of KK states can be used to accelerate gauge coupling unification. As a consequence, we show that the GUT scale in the 5d minimal SUSY GUT cannot be lower than about 10^{14} GeV.Comment: Version in Phys. Lett. B (minor typos fixed, refs added

    Recycling and treatment of herbal pharmaceutical wastewater using Scenedesmus quadricuada

    Get PDF
    Globally, herbal pharmaceutical industries are among the leading pharmaceutical industries. They generate large volume of wastewater during processing and production, which is highly biodegradable in nature and cannot be discharged into environment as such. Hence efforts are being made to evaluate the toxicity of herbal pharmaceutical effluents using green algae Scenedesmus quadricauda. Physico-chemically treated effluents (PCTEs) as well as biologically treated effluents (BTEs) were observed after the application of S. quadricauda. Also, S. quadricauda showed higher growth rate after the addition of PCTE and BTE. The highest yield of algae was observed in BTE up to 15 days of incubation by synthesis of chlorophyll and cell metabolites, even with 10–100% dilution of effluents. The present study also discusses the evaluation of biotoxicity and recycling on herbal pharmaceutical wastewater along with heavy metal remova

    Gauge coupling unification with large extra dimensions

    Get PDF
    We make a detailed study of the unification of gauge couplings in the MSSM with large extra dimensions. We find some scenarios where unification can be achieved (with the strong coupling constant at the Z mass within one standard deviation of the experimental value) with both the compactification scale and the SUSY breaking scale in the few TeV range. No enlargement of the gauge group or particle content is needed. One particularly interesting scenario is when the SUSY breaking scale is larger than the compactification scale, but both are small enough to be probed at the CERN LHC. Unification in two scales scenarios is also investigated and found to give results within the LHC.Comment: 17 pages, 3 figures, some discussions added, few additional references included. Version to appear in Phys. Rev.

    Novel Synthesis of 3-(Phenyl) (Ethylamino) Methyl)-4-Hydroxy-2H-Chromen-2-one Derivatives Using Biogenic ZnO Nanoparticles and their Applications

    Get PDF
    Received: 29.11.2021. Revised: 15.01.2022. Accepted: 15.01.2022. Available online: 21.01.2022.The authors declare that there are no conflicts of interests regarding the publication of this work.The present work describes the novel synthesis of 3, 3-((phenyl) (ethylamino) methyl)-4-hydroxy-2H-chromen-2-one derivatives catalyzed by biogenic ZnO nanoparticles. The synthesized heterocyclic compounds were characterized by fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) and mass spectrometric techniques. Absorption, distribution, metabolism and excretion properties and various toxicities (ADMET) studies and in silico molecular docking studies were carried out for the synthesized compounds. The synthesized compounds were screened for their efficacy towards the antioxidant activity and were subjected to corrosion inhibition study towards the mild steel in acidic medium by weight loss method. Additionally, the recyclability of the employed catalyst was studied.The authors are thankful to the Chairman, Department of Chemistry, Kuvempu University Shankaraghatta for providing the laboratory facilities and to the University of Mysore and Saif Karnatak University, Dharwad for provid-ing spectra. One of the authors, Anjan Kumar G C thankful to the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing a Junior Research fellow-ship [09/908(0010)/2019-EMR-I]

    Discrimination of low missing energy look-alikes at the LHC

    Full text link
    The problem of discriminating possible scenarios of TeV scale new physics with large missing energy signature at the Large Hadron Collider (LHC) has received some attention in the recent past. We consider the complementary, and yet unexplored, case of theories predicting much softer missing energy spectra. As there is enough scope for such models to fake each other by having similar final states at the LHC, we have outlined a systematic method based on a combination of different kinematic features which can be used to distinguish among different possibilities. These features often trace back to the underlying mass spectrum and the spins of the new particles present in these models. As examples of "low missing energy look-alikes", we consider Supersymmetry with R-parity violation, Universal Extra Dimensions with both KK-parity conserved and KK-parity violated and the Littlest Higgs model with T-parity violated by the Wess-Zumino-Witten anomaly term. Through detailed Monte Carlo analysis of the four and higher lepton final states predicted by these models, we show that the models in their minimal forms may be distinguished at the LHC, while non-minimal variations can always leave scope for further confusion. We find that, for strongly interacting new particle mass-scale ~600 GeV (1 TeV), the simplest versions of the different theories can be discriminated at the LHC running at sqrt{s}=14 TeV within an integrated luminosity of 5 (30) fb^{-1}.Comment: 40 pages, 10 figures; v2: Further discussions, analysis and one figure added, ordering of certain sections changed, minor modifications in the abstract, version as published in JHE

    Generating SQL queries from visual specifications

    Get PDF
    Abstract: Structured Query Language (SQL) is the most widely used declarative language for accessing relational databases, and an essential topic in introductory database courses in higher learning institutions. Despite the intuitiveness of SQL, formulating and comprehending written queries can be confusing, especially for undergraduate students. One major reason for this is that the simple syntax of SQL is often misleading and hard to comprehend. A number of tools have been developed to aid the comprehension of queries and improve the mental models of students concerning the underlying logic of SQL. Some of these tools employed visualisation and animation in their approach to aid the comprehension of SQL. This paper presents an interactive comprehension aid based on visualisation, specifically designed to support the SQL SELECT statement, an area identified in the literature as problematic for students. The visualisation tool uses visual specifications depicting SQL operations to build queries. This is expected to reduce the cognitive load of a student who is learning SQL. We have shown with an online survey that adopting visual specifications in teaching systems assist students in attaining a richer learning experience in introductory database courses
    corecore