5,164 research outputs found

    Phase-control of directed diffusion in a symmetric optical lattice

    Get PDF
    We demonstrate the phenomenon of directed diffusion in a symmetric periodic potential. This has been realized with cold atoms in a one-dimensional dissipative optical lattice. The stochastic process of optical pumping leads to a diffusive dynamics of the atoms through the periodic structure, while a zero-mean force which breaks the temporal symmetry of the system is applied by phase-modulating one of the lattice beams. The atoms are set into directed motion as a result of the breaking of the temporal symmetry of the system

    Directed transport of Brownian particles in a double symmetric potential

    Full text link
    We investigate the dynamics of Brownian particles in internal state- dependent symmetric and periodic potentials. Although no space or time symmetry of the Hamiltonian is broken, we show that directed transport can appear. We demonstrate that the directed motion is induced by breaking the symmetry of the transition rates between the potentials when these are spatially shifted. Finally, we discuss the possibility of realizing our model in a system of cold particles trapped in optical lattices.Comment: to appear in Physical Review

    Density modulations in an elongated Bose-Einstein condensate released from a disordered potential

    Full text link
    We observe large density modulations in time-of-flight images of elongated Bose-Einstein condensates, initially confined in a harmonic trap and in the presence of weak disorder. The development of these modulations during the time-of-flight and their dependence with the disorder are investigated. We render an account of this effect using numerical and analytical calculations. We conclude that the observed large density modulations originate from the weak initial density modulations induced by the disorder, and not from initial phase fluctuations (thermal or quantum).Comment: Published version; 4+ pages; 4 figure

    New porous medium Poisson-Nernst-Planck equations for strongly oscillating electric potentials

    Full text link
    We consider the Poisson-Nernst-Planck system which is well-accepted for describing dilute electrolytes as well as transport of charged species in homogeneous environments. Here, we study these equations in porous media whose electric permittivities show a contrast compared to the electric permittivity of the electrolyte phase. Our main result is the derivation of convenient low-dimensional equations, that is, of effective macroscopic porous media Poisson-Nernst-Planck equations, which reliably describe ionic transport. The contrast in the electric permittivities between liquid and solid phase and the heterogeneity of the porous medium induce strongly oscillating electric potentials (fields). In order to account for this special physical scenario, we introduce a modified asymptotic multiple-scale expansion which takes advantage of the nonlinearly coupled structure of the ionic transport equations. This allows for a systematic upscaling resulting in a new effective porous medium formulation which shows a new transport term on the macroscale. Solvability of all arising equations is rigorously verified. This emergence of a new transport term indicates promising physical insights into the influence of the microscale material properties on the macroscale. Hence, systematic upscaling strategies provide a source and a prospective tool to capitalize intrinsic scale effects for scientific, engineering, and industrial applications

    Demonstration of a controllable three-dimensional Brownian motor in symmetric potentials

    Full text link
    We demonstrate a Brownian motor, based on cold atoms in optical lattices, where isotropic random fluctuations are rectified in order to induce controlled atomic motion in arbitrary directions. In contrast to earlier demonstrations of ratchet effects, our Brownian motor operates in potentials that are spatially and temporally symmetric, but where spatiotemporal symmetry is broken by a phase shift between the potentials and asymmetric transfer rates between them. The Brownian motor is demonstrated in three dimensions and the noise-induced drift is controllable in our system.Comment: 5 pages, 4 figure

    Localization of solitons: linear response of the mean-field ground state to weak external potentials

    Full text link
    Two aspects of bright matter-wave solitons in weak external potentials are discussed. First, we briefly review recent results on the Anderson localization of an entire soliton in disordered potentials [Sacha et al. PRL 103, 210402 (2009)], as a paradigmatic showcase of genuine quantum dynamics beyond simple perturbation theory. Second, we calculate the linear response of the mean-field soliton shape to a weak, but otherwise arbitrary external potential, with a detailed application to lattice potentials.Comment: Selected paper presented at the 2010 Spring Meeting of the Quantum Optics and Photonics Section of the German Physical Society. V2: minor changes, published versio

    Tailoring Anderson localization by disorder correlations in 1D speckle potentials

    Full text link
    We study Anderson localization of single particles in continuous, correlated, one-dimensional disordered potentials. We show that tailored correlations can completely change the energy-dependence of the localization length. By considering two suitable models of disorder, we explicitly show that disorder correlations can lead to a nonmonotonic behavior of the localization length versus energy. Numerical calculations performed within the transfer-matrix approach and analytical calculations performed within the phase formalism up to order three show excellent agreement and demonstrate the effect. We finally show how the nonmonotonic behavior of the localization length with energy can be observed using expanding ultracold-atom gases

    Localization of a matter wave packet in a disordered potential

    Full text link
    We theoretically study the Anderson localization of a matter wave packet in a one-dimensional disordered potential. We develop an analytical model which includes the initial phase-space density of the matter wave and the spectral broadening induced by the disorder. Our approach predicts a behavior of the localized density profile significantly more complex than a simple exponential decay. These results are confirmed by large-scale and long-time numerical calculations. They shed new light on recent experiments with ultracold atoms and may impact their analysis

    Anisotropic 2D diffusive expansion of ultra-cold atoms in a disordered potential

    Get PDF
    We study the horizontal expansion of vertically confined ultra-cold atoms in the presence of disorder. Vertical confinement allows us to realize a situation with a few coupled harmonic oscillator quantum states. The disordered potential is created by an optical speckle at an angle of 30{\deg} with respect to the horizontal plane, resulting in an effective anisotropy of the correlation lengths of a factor of 2 in that plane. We observe diffusion leading to non-Gaussian density profiles. Diffusion coefficients, extracted from the experimental results, show anisotropy and strong energy dependence, in agreement with numerical calculations

    Anderson localization of matter waves in tailored disordered potentials

    Full text link
    We show that, in contrast to immediate intuition, Anderson localization of noninteracting particles induced by a disordered potential in free space can increase (i.e., the localization length can decrease) when the particle energy increases, for appropriately tailored disorder correlations. We predict the effect in one, two, and three dimensions, and propose a simple method to observe it using ultracold atoms placed in optical disorder. The increase of localization with the particle energy can serve to discriminate quantum versus classical localization
    • 

    corecore