2 research outputs found

    Polyclonal lymphoid expansion drives paraneoplastic autoimmunity in neuroblastoma

    No full text
    Summary: Neuroblastoma is a lethal childhood solid tumor of developing peripheral nerves. Two percent of children with neuroblastoma develop opsoclonus myoclonus ataxia syndrome (OMAS), a paraneoplastic disease characterized by cerebellar and brainstem-directed autoimmunity but typically with outstanding cancer-related outcomes. We compared tumor transcriptomes and tumor-infiltrating T and B cell repertoires from 38 OMAS subjects with neuroblastoma to 26 non-OMAS-associated neuroblastomas. We found greater B and T cell infiltration in OMAS-associated tumors compared to controls and showed that both were polyclonal expansions. Tertiary lymphoid structures (TLSs) were enriched in OMAS-associated tumors. We identified significant enrichment of the major histocompatibility complex (MHC) class II allele HLA-DOB∗01:01 in OMAS patients. OMAS severity scores were associated with the expression of several candidate autoimmune genes. We propose a model in which polyclonal auto-reactive B lymphocytes act as antigen-presenting cells and drive TLS formation, thereby supporting both sustained polyclonal T cell-mediated anti-tumor immunity and paraneoplastic OMAS neuropathology

    Glutamate Receptor Antibodies in Autoimmune Central Nervous System Disease: Basic Mechanisms, Clinical Features, and Antibody Detection.

    No full text
    Immune-mediated inflammation of the brain has been recognized for more than 50 years, although the initial descriptions were mainly thought to be secondary to an underlying neoplasm. Some of these paraneoplastic encephalitides express serum antibodies, but these were not thought to be pathogenic but instead have a T-cell-mediated pathophysiology. Over the last two decades, several pathogenic antibodies against neuronal surface antigens have been described in autoimmune encephalitis, which are amenable to immunotherapy. Several of these antibodies are directed against glutamate receptors (GluRs). NMDAR encephalitis (NMDARE) is the most common of these antibodies, and patients often present with psychosis, hallucinations, and reduced consciousness. Patients often progress on to develop confusion, seizures, movement disorders, autonomic instability, and respiratory depression. Although initially described as exclusively occurring secondary to ovarian teratoma (and later other tumors), non-paraneoplastic forms are increasingly common, and other triggers like viral infections are now well recognized. AMPAR encephalitis is relatively less common than NMDARE but is more likely to paraneoplastic. AMPAR antibodies typically cause limbic encephalitis, with patients presenting with confusion, disorientation, memory loss, and often seizures. The syndromes associated with the metabotropic receptor antibodies are much rarer and often can be paraneoplastic-mGluR1 (cerebellar degeneration) and mGluR5 (Ophelia syndrome) being the ones described in literature.With the advance in molecular biology techniques, it is now possible to detect these antibodies using cell-based assays with high sensitivity and specificity, especially when coupled with brain tissue immunohistochemistry and binding to live cell-based neurons. The rapid and reliable identification of these antibodies aids in the timely treatment (either in the form of identifying/removing the underlying tumor or instituting immunomodulatory therapy) and has significantly improved clinical outcome in this otherwise devastating group of conditions
    corecore