5 research outputs found

    Juvenile hormone regulates body size and perturbs insulin signaling in Drosophila

    Get PDF
    The role of juvenile hormone (JH) in regulating the timing and nature of insect molts is well-established. Increasing evidence suggests that JH is also involved in regulating final insect size. Here we elucidate the developmental mechanism through which JH regulates body size in developing Drosophila larvae by genetically ablating the JH-producing organ, the corpora allata (CA). We found that larvae that lack CA pupariated at smaller sizes than control larvae due to a reduced larval growth rate. Neither the timing of the metamorphic molt nor the duration of larval growth was affected by the loss of JH. Further, we show that the effects of JH on growth rate are dependent on the forkhead box O transcription factor (FOXO), which is negatively regulated by the insulin-signaling pathway. Larvae that lacked the CA had elevated levels of FOXO activity, whereas a loss-of-function mutation of FOXO rescued the effects of CA ablation on final body size. Finally, the effect of JH on growth appears to be mediated, at least in part, via ecdysone synthesis in the prothoracic gland. These results indicate a role of JH in regulating growth rate via the ecdysone- and insulin-signaling pathways.National Science Foundation Grants: (IOS-0919855, IOS-084584), Howard Hughes Medical Institute, Fundação Calouste Gulbenkian, FCT : [SFRH/Bolsas de Pós-Doutoramento (BPD)/74313/2010]

    FOXO Regulates Organ-Specific Phenotypic Plasticity In Drosophila

    Get PDF
    Phenotypic plasticity, the ability for a single genotype to generate different phenotypes in response to environmental conditions, is biologically ubiquitous, and yet almost nothing is known of the developmental mechanisms that regulate the extent of a plastic response. In particular, it is unclear why some traits or individuals are highly sensitive to an environmental variable while other traits or individuals are less so. Here we elucidate the developmental mechanisms that regulate the expression of a particularly important form of phenotypic plasticity: the effect of developmental nutrition on organ size. In all animals, developmental nutrition is signaled to growing organs via the insulin-signaling pathway. Drosophila organs differ in their size response to developmental nutrition and this reflects differences in organ-specific insulin-sensitivity. We show that this variation in insulin-sensitivity is regulated at the level of the forkhead transcription factor FOXO, a negative growth regulator that is activated when nutrition and insulin signaling are low. Individual organs appear to attenuate growth suppression in response to low nutrition through an organ-specific reduction in FOXO expression, thereby reducing their nutritional plasticity. We show that FOXO expression is necessary to maintain organ-specific differences in nutritional-plasticity and insulin-sensitivity, while organ-autonomous changes in FOXO expression are sufficient to autonomously alter an organ's nutritional-plasticity and insulin-sensitivity. These data identify a gene (FOXO) that modulates a plastic response through variation in its expression. FOXO is recognized as a key player in the response of size, immunity, and longevity to changes in developmental nutrition, stress, and oxygen levels. FOXO may therefore act as a more general regulator of plasticity. These data indicate that the extent of phenotypic plasticity may be modified by changes in the expression of genes involved in signaling environmental information to developmental processes

    Local cyclic adenosine monophosphate signalling cascades—Roles and targets in chronic kidney disease

    No full text
    The molecular mechanisms underlying chronic kidney disease (CKD) are poorly understood and treatment options are limited, a situation underpinning the need for elucidating the causative molecular mechanisms and for identifying innovative treatment options. It is emerging that cyclic 3′,5′‐adenosine monophosphate (cAMP) signalling occurs in defined cellular compartments within nanometre dimensions in processes whose dysregulation is associated with CKD. cAMP compartmentalization is tightly controlled by a specific set of proteins, including A‐kinase anchoring proteins (AKAPs) and phosphodiesterases (PDEs). AKAPs such as AKAP18, AKAP220, AKAP‐Lbc and STUB1, and PDE4 coordinate arginine‐vasopressin (AVP)‐induced water reabsorption by collecting duct principal cells. However, hyperactivation of the AVP system is associated with kidney damage and CKD. Podocyte injury involves aberrant AKAP signalling. cAMP signalling in immune cells can be local and slow the progression of inflammatory processes typical for CKD. A major risk factor of CKD is hypertension. cAMP directs the release of the blood pressure regulator, renin, from juxtaglomerular cells, and plays a role in Na+ reabsorption through ENaC, NKCC2 and NCC in the kidney. Mutations in the cAMP hydrolysing PDE3A that cause lowering of cAMP lead to hypertension. Another major risk factor of CKD is diabetes mellitus. AKAP18 and AKAP150 and several PDEs are involved in insulin release. Despite the increasing amount of data, an understanding of functions of compartmentalized cAMP signalling with relevance for CKD is fragmentary. Uncovering functions will improve the understanding of physiological processes and identification of disease‐relevant aberrations may guide towards new therapeutic concepts for the treatment of CKD
    corecore